Честная физика. Статьи и эссе.

5. Догонялки с теплотой.

 

5.4. Что же такое температура?

 

 

       А всё почему? Потому что вся эта куча смешных проблем нарасла не из-за ошибочности представлений о том, от какого тела к какому передаётся тепловая энергия – от горячего к холодному, или наоборот. С чего теоретики взяли, что тепловая энергия вообще передаётся от одного тела к другому? Ведь всё может быть иначе. В полном согласии с законом сохранения и превращения энергии, в тепловую энергию тела может превращаться энергия в какой-нибудь другой форме, которой обладает это же самое тело. Сумма этих двух энергий у тела (тепловой и той, которая в неё превращается) может оставаться постоянной. И тогда нам может лишь казаться, что тепловая энергия переходит от горячего тела к холодному, ибо в обоих телах могут происходить лишь перераспределения энергий в той и другой формах. Суммы этих энергий в обоих телах будут оставаться прежними, т.е. каждое тело будет иметь после теплового контакта столько же энергии, сколько оно имело до этого контакта.

       Вот такой подход не только радикально проясняет картину происходящего при тепловых явлениях, но и устраняет тучу противоречий, в которых тепловая физика давно захлебнулась. А первое, что даёт нам такой подход – это прояснение многострадального понятия «температура».

 

       Почему это понятие в рамках традиционного подхода противоречиво? Вон теоретики придумали «внутреннюю энергию» тела. Чем эта энергия больше, тем выше температура, помните? Внутренняя энергия идеального газа, она вообще прямо пропорциональна его абсолютной температуре. Добавим сюда ещё знаменитую теорему молекулярно-кинетической теории об энергии, приходящейся на каждую механическую степень свободы молекулы. Эта энергия тоже прямо пропорциональна абсолютной температуре. Трудно отделаться от стойкого ощущения того, что температура является мерой энергосодержания. Они же, мол, пропорциональны друг другу!

       О, на эту удочку ловились многие, а потом переживали страшное разочарование. Вот в чём проблема: энергия является величиной аддитивной, а температура – неаддитивной. При соединении двух тел, имеющих одинаковые энергии, мы получаем удвоенную энергию. Но при соединении двух тел, имеющих одинаковые температуры, мы не получаем удвоенной температуры. Работает закон сохранения энергии, но не работает закон сохранения температуры. Каким же образом неаддитивная величина, температура, может быть мерой аддитивной величины, энергии? Да никаким! Подумаешь, иногда пропорциональны друг другу. Толку-то!..

 

       А чтобы был толк, вот что предлагается сделать: допустить, что температура является не мерой какой-либо энергии, а мерой соотношения между энергиями в двух различных формах, образующих сопряжённую пару. Речь о такой паре энергий тела, сумма которых остаётся постоянной, поскольку увеличение одной из них происходит за счёт уменьшения другой. Таких сопряжённых пар энергии мы знаем две, и каждой из них соответствует давно известное энергетическое распределение, в которое температура входит как параметр.

 

       Одна из этих пар – это кинетическая энергия частицы и собственная энергия частицы, т.е. её масса; этой паре энергий соответствует температура, входящая как параметр в максвелловское распределение молекул по энергиям. Вторая из этих пар – это энергия возбуждения атома и энергия связи соответствующего атомарного электрона; этой паре энергий соответствует температура, входящая как параметр в спектр равновесного излучения. Этот спектр отражает равновесное распределение атомов по энергиям возбуждения.

 

       Большие учёные попытаются поднять нас на смех, поскольку до сих пор в физике считается, что как кинетическая энергия, так и энергия возбуждения передаются атому откуда-то извне, а не появляются за счёт его собственных ресурсов. Увы: пока вы, уважаемые, не избавитесь от предрассудков насчёт «передачи энергии извне», именно вы будете смешить публику в вопросах, связанных с тепловыми явлениями.

       Что касается кинетической энергии, то экспериментальные реалии свидетельствуют о том, что мы не можем сообщить кинетическую энергию частице, мы можем лишь превратить в её кинетическую энергию часть её собственной энергии, т.е. массы. И обусловлено это не ограниченностью наших технических возможностей. Просто физические законы прописаны так, что иных вариантов приобретения кинетической энергии, кроме как за счёт своей массы, не предусмотрено. Поэтому при разгоне частицы, её масса уменьшается. Никакого релятивистского роста массы в природе не существует. Это самая страшная научная тайна, благодаря которой всё ещё продолжается мышиная возня на ускорителях и коллайдерах. То, что более быстрые заряженные частицы труднее отклоняются электромагнитными полями, этот факт говорит не об увеличенной массе быстрых частиц, а о сниженной эффективности воздействия на них электромагнитных полей. Все попытки выделить чудовищную накрученную энергию быстрых частиц при их взаимодействии с веществом (а не с полями) закончились смехотворно. Единственное (!) вошедшее в историю прямое измерение энергии релятивистских электронов, кстати, калориметрическим способом, (опыт Бертоцци) на поверку оказалось мошенничеством.

 

       Что касается энергии возбуждения атома, то из опыта достоверно известно, что энергия связи атомарного электрона уменьшается на величину, равную энергии возбуждения. Поэтому не вызывает никаких сомнений, что энергия возбуждения и энергия связи образуют сопряжённую пару. Правда, отсюда следует, что энергия кванта света не передаётся от атома к атому. Но это вполне согласуется с изложенными ранее представлениями о свете (см. «Фокусы-покусы квантовой теории»). Фотонов, как порций энергии, летящих в вакууме со скоростью света, не существует в природе, а процесс движения световой энергии – это цепочка скоррелированных перераспределений энергий у пар атомов. А именно, у одного атома энергия возбуждения пропадает, а энергия связи, соответственно, увеличивается, а у второго всё происходит наоборот. Обычно смотрят лишь на энергию возбуждения и видят иллюзию того, что энергия переместилась, а ведь каждый из этой пары атомов остался при своём.

 

       Мы понимаем: очень непривычно звучит то, что световая энергия никуда не передаётся. Даже по лазерному лучу. Специалисты кидались демонстрировать нам результаты лазерного воздействия на вещество. Как будто мы сами не занимались лазерной обработкой материалов и не видали такого добра. «Ну вот же, – чуть не плакали специалисты, – вот сюда и сюда фотоны били, били, и свою энергию отдавали, отдавали!» Нет, не били и не отдавали. Лазерный луч деформирует у атомов мишени распределение по энергиям возбуждения, но полная энергия атомов какой была, такой и остаётся! А температура мишени, конечно, повышается: все эффекты лазерного воздействия на вещество – это эффекты тепловые, включая испарение и ионизацию! И все эти эффекты обусловлены перераспределениями в собственных энергетических закромах мишени, а не наращиванием содержимого этих закромов!

       Друзья, если это вам кажется бредом, имейте в виду: вы находитесь под действием одурманивающей концепции о том, что повышение температуры обязательно означает прибыль полной энергии. Так стряхните с себя этот дурман, иначе ведь и свихнуться можно! Знаете, в №1 за 1999 г. журнала «Квантовая электроника», главный редактор в обращении к авторам и читателям всерьёз обнародовал «фантастическую идею применения лазерных пучков для сброса энергии в бесконечное космическое пространство с целью предотвращения теплового перегрева Земли». Ну, давайте прикинем: если КПД лазерной установки составляет 20%, то это означает, что без передачи энергии по лазерному лучу (!) 20% мощности, подводимой к установке, будет тратиться на нагрев мишеней, а 80% – на нагрев самой установки и окружающей её среды. Слава таким борцам с глобальным потеплением!.. Правда больше про этот выдающийся проект мы ничего не слышали. Небось кто-то кому-то шепнул заветное слово…

 

       Давайте же теперь сформулируем понятие температуры, которое адекватно отражает происходящее при тепловых явлениях. Это понятие, конечно, можно ввести лишь для равновесного состояния у достаточно большого коллектива частиц, поскольку величина температуры оказывается результатом статистического усреднения. Скажем про две температуры, которые соответствуют двум вышеназванным сопряжённым парам энергий.

       Кинетическая температура – это мера того, какая часть собственных энергий частиц (в среднем) превращена в энергии их хаотического движения: поступательного, колебательного, вращательного.

       Атомная температура – это мера того, какая часть энергий связи атомарных электронов (в среднем) превращена в их энергии возбуждения.

 

       Кинетическая температура входит как параметр в максвелловское распределение молекул по скоростям, а атомная температура входит как параметр в спектр равновесного излучения, который отражает равновесное распределение атомов по энергиям возбуждения.

 

       Неспроста максвелловское распределение и равновесный спектр похожи друг на друга, как близнецы. Оба они описывают соответствие между температурой и распределением энергий. Заметьте, максимум максвелловского распределения соответствует энергии kT, где k - постоянная Больцмана, T - абсолютная температура; а максимум равновесного спектра соответствует энергии 5kT. При одной и той же температуре наиболее вероятная энергия возбуждения атома в пять раз больше наиболее вероятной кинетической энергии молекулы! Это не бред, это – экспериментальные реалии! Ничего не поделаешь, коэффициенты соответствия между температурой и разными формами энергии разные!

 

       Для кого-то это непривычно? А то, что однозначного соответствия между температурой и энергией до сих пор никто не сконструировал – это привычно, что ли? Так оно – то же самое, только «в профиль». Лучше вот на что обратить внимание. Обе названные температуры, кинетическая и атомная, сразу проясняют физический смысл абсолютной температурной шкалы с неизбежным нулём на нижнем конце. Действительно, нулевая кинетическая энергия молекул соответствует абсолютному нулю кинетической температуры, а нулевая энергия возбуждения атомов соответствует абсолютному нулю атомной температуры. Причём кинетическая и атомная температуры тела не обязательно совпадают, поскольку возможны физические воздействия, при которых деформируется либо только распределение по энергиям хаотического движения, либо только распределение по энергиям возбуждения. Так, Солнышко, припекая землицу, увеличивает её атомную температуру. А затем в результате тепловой релаксации кинетическая и атомная температуры землицы могут выровняться.

 

       Нам конечно зададут оригинальный вопрос: а что, мол, дают такие представления о температуре? Вот тебе раз! Да из них сразу следует оглушительный вывод: при выравнивании температур у пары тел, находящихся в тепловом контакте, никакой нескомпенсированной «передачи тепловой энергии» от горячего тела к холодному не происходит. Каждое из этих тел остаётся при своей сумме энергий, а изменяются лишь соотношения в сопряжённых парах энергий, входящих в эти суммы.

       Не менее оглушительный вывод следует для термоизолированных систем. Такая система без взаимодействия с окружающим миром не может изменить свою суммарную энергию, но вполне может изменить свою температуру, если в результате некоторых внутренних процессов изменится соотношение в той или иной сопряжённой паре энергий. Примеры таких процессов – химических, электрических, ядерных – мы уже приводили выше. Именно с химическими процессами такого рода имеют дело термохимики, когда они измеряют теплоты химических реакций калориметрическим методом, где измеряемой величиной является вовсе не энергия, а приращение температуры.

 

       Видите, как оно всё получается? Шутить изволят термохимики, когда говорят, что определяют тепловые эффекты химических реакций. Не тепловые эффекты они определяют, а температурные. Не понимают, что между ними большая разница.

       Насчёт причин того, что называется тепловыми эффектами химических реакций, наука будет заблуждаться, сохраняя умное выраженье на лице, пока в ходу будут такие научные термины, как «выделение или поглощение тепла при химических реакциях». Эти термины мастерски вводят в заблуждение. Можно подумать, что реакция, идущая «с поглощением тепла», заимствует это тепло из окружающей среды. Которая, в свою очередь, это тепло любезно предоставляет: на, мол, реакция, иди себе с Богом. Для хорошей, мол, реакции не жалко! Можно подумать, что без этой любезной помощи, например, в условиях термоизоляции, реакция «с поглощением тепла» идти не сможет. Ха-ха! Да она там идёт с ещё большим удовольствием. Мы об этом уже упоминали выше. И результатом этого большого удовольствия является что? Правильно, понижение температуры в зоне реакции без какого-либо теплообмена с окружающей средой, ведь этот теплообмен сведён на нет с помощью теплоизолирующих стенок!

 

       Дяденьки, вот вы занимаетесь калориметрическими измерениями уже почти триста лет. Калориметр – это ведь не шибко навороченное устройство. Это не коллайдер, не детектор гравитационных волн, и даже не интерферометр Майкельсона. Надо было иметь особые дарования, чтобы за все эти годы не заметить, что так называемые тепловые эффекты химических реакций являются в действительности эффектами повышения-понижения температуры в зоне реакции. А эти повышения-понижения температуры требуют совсем иных объяснений, чем «выделения-поглощения тепла».