Лженаука – генетика. Чума ХХ века.

II.22. Интерференция РНК

 

 

 

Не надо забывать, что у живых организмов идёт постоянный обмен веществ. Поэтому надо знать не только механизм синтеза молекул, но и механизмы их последующей обработки (химической модификации и упаковки в трехмерном пространстве и разрушения), иначе, если будет излишек синтеза, но не будет разрушения, то будет избыток данной молекулы. Двойные спирали РНК существуют в виде рРНК, сРНК, тРНК. Поэтому в клетке должны быть механизмы для их разрушения, так как идёт постоянный обмен веществ и клетка должна постоянно приспосабливаться к изменениям внешней среды.

 

Имеющиеся в клетке белковые машины, которые клетка использовала и использует для разрушения двойных цепей РНК, были с успехом применены для целей изучения функции белков. Один из первых примеров РНК-интерференции был обнаружен при получении трансгенных растений петунии. Явление РНК-интерференции впервые было обнаружено у круглого червя–нематоды Caenorhabditis elegans (кто не знает, сообщаю, что этот червь относится к категории глист, то есть, червей, живущих в кишечнике у млекопитающих).

 

В 2006 году Э.Файр и К.Мелло, первый и последний автор статьи, опубликованной в журнале Природа (Nature) в 1998 г., получили Нобелевскую премию в области физиологии и медицины за работы по изучению РНК-интерференции у нематоды C.elegans, опубликованные в 1998 году. Они вводили в клетки одиночные и двойные цепи РНК, комплементарные мРНК одного из генов. При введение двойной цепи РНК происходило блокирование специфического, гомологичного ей по нуклеотидной последовательности, гена. РНК-интерференция обнаружена почти во всех эукариотических организмах (за исключением почкующихся дрожжей Saccharomyces cerevisiae).

 

Сейчас для удаления продуктов гена из клеток, выращиваемых в пробирке, используют введение в цитоплазму или непосредственно в ядро коротких одиночных или двойных молекул РНК, комплементарных особым образом отобранным участкам мРНК, которая синтезируется основе выбранного гена. Попадание этих фрагментов ведет к тому, что двойные цепи разделяются на одиночные с помощью белковой машины РИСК, а одиночные цепи действуют непосредственно. Полученные после разделения в РИСКе или непосредственно введенные в цитоплазму цепочки РНК, содержащие 20–25 нуклеотидов, приклеиваются (интерферируют) к комплементарным зонам мРНК производной от выбранного гена (139, 191).

 

Одну из двух цепочек каждого фрагмента называют ведущей или «направляющей». Ведущая цепь специфически связывается с молекулой мРНК и запускает разрезание белком. Такая длина (порядка 20–21 нуклеотидов) двухцепочечных фрагментов РНК увеличивает специфичность приклеивания ведущей цепи к мРНК. Если взять коплементарный участок большей длины, то склеивание займет больше время, а если его сделать короче, то сила сцепления склеенных участков уменьшится (135).

 

Приклеивание приводит к тому, что зрелая мРНК не может быть использована рибосомой и после долгого стояния отделяется от нее, разрушается с концов РНК-азами, а двойной участок снова попадает в РИСК и снова наша короткая комплементарная РНК оказывается готова к тому, чтобы инактивировать следующую молекулу мРНК. Процесс идет до тех пор, пока все мРНК не будут инактивированы. Тогда короткие цепочки РНК разрушаются РНК-азами и клетка снова может синтезировать мРНК с нашего белка. То есть введение коротких интерферирующих цепей РНК дает временный эффект по блокированию синтеза выбранного белка.

 

Другим методом является введение в геном с помощью микроинъекции, перфорирования или инфицирования вирусом генов, содержащих комплементарные участки, которые после синтеза незрелой РНК склеиваются друг с другом, образуя шпильки с петелькой на конце (что напоминает теннисную ракетку). Эта шпилька отрезается белками типа Дайсер и нарезается на короткие фрагменты длиной 20–25 нуклеотидов. Затем в цитоплазме РИСК разделяет две цепи и образует одиночную цепь, способную приклеиваться к мРНК от выбранного белка. Обычно ген либо просто вводится, либо встраивается в геном так, чтобы он мог быть активирован особым стимулятором, который вводится в среду, где растут клетки.

 

Не всегда можно с уверенностью предположить, успеют ли комплементарные мРНК склеиться с короткой РНК или нет, пока ее не захватит рибосома. Оттого, насколько сильно наслаиваются склеивающиеся цепи РНК, зависит степень нарушения, а также от продолжительности жизни мРНК.

 

Если длина комплементарной склейки достигает 20 и более нуклеотидов, то прочность склейки становится значительной, и склеенные участки не позволяют рибосоме передвигаться вдоль мРНК. Рибосома встает перед местом склейки и затем распадается на две субъединицы. Синтез белка останавливается. После прекращения синтеза белка рибосома распадается, и мРНК, содержащая склейки или две склеенные молекулы мРНК, становятся жертвами Дайсера и РИСКа. Тем самым блокируется синтез белка. Совершенно не ясно, успеет ли комплементарные мРНК склеиться или нет, пока ее не захватит рибосома. Или же рибосома встает перед местом склейки и затем распадается на две субъединицы.