Лженаука – генетика. Чума ХХ века.

6.4. Классификация мутаций

 

 

 

Мутации, то есть изменения последовательности нуклеотидов в ДНК, могут быть чрезвычайно разнообразны. Для обозначения мутаций, которые ведут к замене в белке одной аминокислоты на другую, обычно используют однобуквенный аминокислотный код, например: R560T означает замену аргинина (R) на треонин (Т) в положении 560, G542X – замену глицина (G) на терминирующий кодон в положении 542, а ΔF508 – отсутствие фенилаланина (F) в положении 508. Может быть замена двух аминокислот, но в разных участках белка или в разных доменах.

 

Для классификации мутаций можно использовать разные признаки.

 

А. Где располагаются мутации, в каком белке, в какой хромосоме, в начале или конце аминокислотной цепи. Мутации могут быть в соматических или в половых клетках.

 

А1. Мутации могут быть в пределах интронов. Такие мутации важны с точки зрения молекулярной гибридизации мРНК ин виво (in vivo), то есть склеивания или интерференции мРНК. Кроме того нельзя исключить, что мутации внутри интрона могут давать сдвиг рамки считывания.

 

А2. Мутации могут быть в пределах экзонов и влиять на строение и функцию получаемого белка. Мутации в экзонах могут быть вне активного центра белка, что функционально проявляется довольно мало, и в активном центре белка, что может давать фенотипические проявления.

 

Б. Мутации можно классифицировать на основании того, как и что изменилось в самой ДНК. Мутации могут захватывать участки ДНК разной длины (от хромосомных инверсий и аберраций до изменения на уровне единичного нуклеотида). Встречаются удаления нуклеотидов, их вставки, замены нуклеотидов или их цепочек.

 

Б1. Мутации могут захватывать и всего лишь один нуклеотид (его удаление, вставка или замена нуклеотида). Если это единственный нуклеотид, тогда обычно говорится о точковой (точечной) мутации. Удаление или добавление одного или двух нуклеотидов обычно ведет к сдвигу рамки считывания (см. чуть ниже).

 

При замене одного нуклеотида в кодирующей области гена, то есть в экзоне или цистроне, возможны следующие точечные мутации:

1) несмысловая мутация, при которой замена нуклеотида в ДНК и соответствующее изменение кодона мРНК не приводит к изменению последовательности аминокислот в молекуле белка (например, замена кодона УУУ на кодон УУЦ, который тоже соответствует фенилаланину),

2) так называемая миссенс–мутация, при которой замена нуклеотидов в ДНК и соответствующее изменение кодона мРНК приводит к замене одной из аминокислот в молекуле белка (например, появление кодона лейцина УУА вместо кодона фенилаланина УУУ),

3) нонсенс-мутация, при которых замена нуклеотида превращает кодон в один из терминирующих кодонов (например, появление терминирующего кодона УАА вместо кодона тирозина УАУ).

 

Мутации могут быть без изменения белка и без гибридизационных осложнений; без изменения белка, но с гибридизациопнными осложнениями; с гомологичными изменениями белка. Гибридизационные осложнения могут быть сильными и слабыми. Гибридизационные осложнения могут удалять белок, но при этом обычно ничего не случается, или снижать его синтез.

 

Теперь об удалении или добавлении одного нуклеотида, что, как правило, ведет к сдвигу рамки считывания. Если один нуклеотид убрать или добавить, то будет сдвиг рамки считывания и будет синтезироваться совсем другой белок. Эффект подобной мутации зависит от того, сколько копий данного гена имеется в генотипе и каково состояние его комплементарного гена-аллеля, то есть комплементарного гена в диплоидном наборе хромосом.

 

Б2. Мутации могут захватывать протяженный участок молекулы: удаление группы нуклеотидов, замена группы нуклеотидов, вставка группы нуклеотидов. При удалении большой части цепи нуклеотидов (так называемых крупных делециях) затрагивают часть гена, весь ген или группу соседних генов. Удаление группы соседних генов особенно опасны.

 

Удаление куска ДНК может также привести к слиянию кодирующих последовательностей двух генов и образованию химерного белка. Такие мутации часто происходят при обмене парных хромосом гомологичными кусками. Потеря части нуклеотидной цепи прерывает или приводит к потере кодирующей части гена, и синтеза соответствующего белка не происходит. Кроме того, в ДНК могут быть вставлены крупные куски инородной ДНК. Перемещения и удаления кусков ДНК изменяют окружение гена и могут таким образом содействовать его вовлечению в новые контролирующие взаимодействия. Исчезновение всей последовательности нуклеотидов, ответственных за данный белок, – редкое событие, хотя и возможное.

 

Б3. Те же принципы можно отнести к участкам хромосом. Замена нескольких аминокислот обычно происходит при видимых хромосомных изменениях (аберрациях). Крупные блоки хромосом и их обмен имеют название хромосомные мутации или аберрации. Если идет замена более чем одной аминокислоты подряд, то обычно происходят изменения пространственной конфигурации белка и его каталитической активности.

 

Хромосомные мутации посредством больших изменений в ДНК, например, удалений (делеций), вставок, перемещений (транслокаций) или удвоений (дупликаций). Такие большие изменения называются хромосомные нарушения (аберрации). Изменения в хромосомах могут происходить в результате штатных (“законных”) рекомбинаций между длинными гомологичными последовательностями. Вставки чужеродного материала в геном облегчают горизонтальный перенос генов. Дупликации поставляют дополнительные копии генов, которые могут накапливать мутации.

 

Инверсии – это крупномасштабные изменения структуры хромосом (затрагивающие миллионы нуклеотидов); к ним относят удвоения больших цепочек нуклеотидов, удаление участков нуклеотидных цепочек и перенос фрагментов из одной хромосомы на другую. Мутации могут затрагивать как весь геном (3 млрд. пар нуклеотидов), например при триплоидии, когда появляется третий набор хромосом. Трисомия, удаление какой–нибудь хромосомы или добавление лишней, например, игрек-хромосомы. Например, УУХ, будет сверхмужчина.

 

В. Мутации могут быть классифицированы по тому, когда они возникают.

В1. Во время копирования при удвоении ДНК.

В2. Во время ремонта цепей ДНК после их повреждения.

В3. При переносе информации с РНК на ДНК.

В4. Во время митоза или мейоза.

В5. Химические радикалы, в особенности окислительные радикалы (оксирадикалы).

В6. Радиационные: свет, гамма бета и альфа лучи.

В7. Вирусные инфекции.

В8. Во время поглощения из среды чужеродной ДНК.

 

Г. Мутации классифицируются по тому, кто или что является инициатором мутаций. Их можно разделить на:

Г1) спонтанные (они происходят сами, спонтанно, без участия человека и клетки, случайно),

Г2) индуцированные (человек специально их вызывает) и

Г3) направленные (клетка или организм сами ищут нужную мутацию, например, во время иммуногенеза).

 

Д. Мутации могут быть классифицированы по вызвавшей их причине.

Д1. Ошибки функционирования белковых или нуклеиновых машин.

Д2. Химические повреждения, в том числе окси-радикалами.

Д3. Физические повреждения или свето-химические, вызванные светом и другими видами излучений, в том числе ионизирующая радиация.

Д4. Биологические причины, обработка, транскрипция, перенос мРНК.

 

Е. Мутации можно классифицировать и по результатам мутаций, то есть по фенотипическому эффекту, который вызывает мутация.

 

Е1. Так называемые несмысловые или, по моей терминологии, непроявляемые или изогенные мутации. Это замена нуклеотида(ов), не ведущая к замене аминокислоты. Изогенные мутации – это такие мутации, при которых происходит замена нуклеотида таким образом, что один кодон той или иной аминокислоты заменяется на другой кодон, кодирующий ту же аминокислоту. Результат несмысловых (изогенных) мутаций зависит от генотипа. Могут быть мутации, ведущие к возможности склеивания (гибридизации или интерференции) мРНК двух белков. Фенотип будет зависеть от значимости данных двух белков, от наличия функционально параллельных белков и т.д. Изогенные мутации не видимы, если нет гибридизационных осложнений.

 

Е2. Невидимые или гомогенные мутации – это такие мутации, когда одна аминокислота в белке заменяется на гомологичную аминокислоту, то есть сходную по химической структуре и свойствам. Такие мутации могут детектироваться иммунной системой (см. Приложение_VII), но функционально они, как правило, не проявляются.

 

Е3. Замена аминокислоты на негомологичную аминокислоту может давать разные последствия. Мутации можно разделить на малозначимые и значимые. Если замена локализована в неактивном центре белка, то проявления будут минимальными.

 

Если мутации нарушают функцию белка, то обычно такие мутации должны быть в тех участках белка, которые важны для его функции: 1) нарушающие каталитические способности белка, 2) изменяющие его трехмерную структуру, а значит и ряд функций, 3) затрагивающие сигналы, определяющие локализацию белка и пути его транспорта, 4) затрагивающие участки, обеспечивающие взаимодействие данного белка с другими белками во время выполнения белком своих функций.

 

При этом могут быть мутации, дающие видимый фенотип при нагрузке. Обычно это мутации в активном центре белка и с формированием доминантной негативности, но при этом, если имеется много функционально параллельных белков. Наконец, существуют мутации, видимые фенотипически, без нагрузки. Обычно это мутации в активном центре белка и с формированием доминантной негативности, если при этом нет функционально параллельных белков и количество копий данного белка ограничено.

 

Ж. Мутации могут вести к возникновению альтернативного сплайсинга. При этом будет синтезироваться несколько другой белок. Удаление старт кодона приведет к тому, что белок не будет синтезироваться и данная цепь нуклеотидов будет просто хаотичным набором аминокислот. Их фенотипическое проявление зависит от генома.

 

З. Мутации можно классифицировать как рецессивные и доминантные. Но об этом чуть ниже.