Лженаука – генетика. Чума ХХ века.

7.6. Механизмы доминирования и рецессирования

 

 

 

Итак, как я отметил выше, понятия «доминантность» и «рецессивность» были предложены для описания внешнего вида растений и пород домашних животных. В то время никто не говорил о каком–то наследственном веществе. Концепция генов родилась позднее. Затем формальные генетики явочным порядком, по умолчанию распространили концепцию доминантности / рецессивности на другую умозрительную концепцию, говорящую о том, что имеется прямая связь между информацией, записанной в цепи ДНК, и признаком, проявляющимся в фенотипе. Хотя выше я показал, что никакой такой связи нет. Так или иначе, но в молекулярной генетике переопределили термины «доминантность» и «рецессивность», и сейчас относят их генам в виде их вариантов аллелей.

 

Но вопрос в том, что большинство генетиков не понимает, как вообще работают белки в клетке, и как может реализоваться признак не только в многоклеточном организме, но в отдельно взятой клетке. В большинстве случаев генетики не имеют четкого представления о том, как тот или иной ген, особенно из тех, которые транспортируются клеткой, проявляется во внешних признаках, и почему в одном случае мутация становится доминантной, а в другом – рецессивной. Мне приходилось сотрудничать с генетиками, которые находили гены, но совершенно не представляли, как же они работают в реальной жизни. Точно также никто толком не понимает, что такое мутации доминантные и рецессивные, если брать изменения нуклеотидной последовательности, и с точки зрения клеточной биологии. Пока не описан ход проявления ни одного признака, чётко идущего по доминантному пути. Требуется большая работа, чтобы расшифровать молекулярные механизмы, действующие в биологии развития. Поэтому мне придется просветить генетиков.

 

Вот что мне удалось выудить из Интернета.

«Мутантные аллели приводят к подавлению, нарушению или изменению функции гена. Применительно к гену, аллели разделяются на две группы – нормальные, или аллели дикого типа, при которых функция гена не нарушена, и мутантные, приводящие к нарушению работы гена. В любых популяциях и для любых генов аллели дикого типа являются преобладающими. При рецессивных болезнях наличие остаточной активности фермента облегчает течение болезни: так происходит при некоторых нарушениях обмена аминокислот и лизосомных болезнях накопления.

 

Мутации в генах ферментов обычно вызывают рецессивные болезни. Большинство подавляющих функцию мутаций в генах-аллелях рецессивны, к ним относятся аллели, вызывающие недостаточность ферментов у человека, и большинство нулевых аллелей, известных у мышей. Ген, потерявший способность экспрессироваться (синтезироваться), или кодирующий нефункциональный белок часто называют нулевым. ДНК, кодирующая мутантный, совершенно неактивный белок, остается как балласт и не мешает. Содержание ферментов обычно выше, чем это необходимо для поддержания нормальных концентраций субстратов и продуктов реакции, поэтому даже существенное изменение активности ферментов часто не влияет на скорость метаболизма.

 

Если половинной концентрации белка недостаточно для нормальной жизнедеятельности, у гетерозигот по нулевому аллелю развивается болезнь. Вызывает ли мутация доминантную или рецессивную болезнь, определяется двумя факторами:

- влиянием мутации на функцию генного продукта и

- устойчивостью биологической системы к нарушению функции именно этого генного продукта.

 

Некоторые мутантные аллели не просто подавляют определенную биологическую функцию, а вызывают ее изменение. У гетерозигот по доминантно-негативному аллелю аномальный белок, кодируемый мутантным аллелем, нарушает функцию белка, кодируемого нормальным аллелем. Доминантно-негативные аллели обычно кодируют белки, которые в качестве субъединиц входят в состав более сложных структур или взаимодействуют с другими белками или нуклеиновыми кислотами. У гетерозигот по доминантно-негативному аллелю болезнь протекает в более тяжелой форме, чем у гетерозигот по нулевому аллелю.»

 

А теперь эту белиберду мне придется перевести на нормальный русский язык. Итак, как же работает доминантное и рецессивное наследование с позиций клеточной биологии, как реализуется свойство доминантности и рецессивности на молекулярном уровне? Поскольку этому вопросу даже в современных российских учебниках генетики уделено очень мало внимания, то мне придется остановиться на этом вопросе поподробнее. Из–за чрезвычайной сложности я не буду разбирать ситуацию, когда имеется несколько одних и тех же генов. В такой ситуации, как правило, речи о доминантности и рецессивности быть не может, за исключением ситуации, когда мутантный белок имеет такие свойства, что способен подавить функцию нормального белка, даже если данный белок синтезируется на основе нескольких генов. Но об этом чуть позже.

 

Рассмотрим как доминирование и рецессивное состояние возникают в случае пары генов, кодирующей один и тот же белок. Белок обычно находится в одном из двух функциональных состояний: 1) активная функция и 2) неактивное состояние, в котором белок не выполняет специфической для его функции. Любой белок работает (здесь я не буду говорить о транспортных функциях белка) в основном тогда, когда он взаимодействует с другим белком, липидом, полисахаридом или нуклеиновой кислотой. Как правило, в организме многоклеточных животных одиночная молекула белка, если это не секретируемый фермент, оказывается не нужной. Понятие «активное состояние» означает, что белок взаимодействует с указанными выше веществами и катализирует химическую реакцию, либо осуществляет другую функцию, о которых я писал выше. В неактивной форме белок не взаимодействует с этими веществами или структурами, образованными из этих веществ.

 

Если мутация в последовательности нуклеотидов ДНК создает условия для того, чтобы наш белок больше времени проводил в состоянии активности, то тем самым исключается конкуренция за место с белком, синтезирующимся на нормальном гене. Тем самым возникает доминантный фенотип.

 

Если, наоборот, мутация ведет к тому, что белок из–за этого не может перейти в активное состояние, то возникает рецессивная мутация. Если белок вообще не функционален, то гетерозиготные организмы могут не отличаться от гомозиготных. В таком случае половинного количества нормального белка хватает, для того, чтобы заменить функцию того количества белка (100%), которое синтезируется из двух генов. Например, условно, при скрещивании черных и белых организмов в случае, если белый цвет связан с рецессивным мутантным геном, при котором мутантный белок не функционален, то в первом поколении все потомки будут черными.

 

Если же мутированный белок сохраняет остаточную способность конкурировать за места взаимодействия с нормальным белком, то возникает неполное доминирование или неполное рецессирование, и нормальный признак будет проявляться только частично. Например, в нашем случае потомки после первого скрещивания будут все серыми. Во втором поколении будет 25% черных особей, 50% серых и 25% белых.

 

Доминантно–негативные мутированные гены часто кодируют белки, которые в качестве субъединиц входят в состав более сложных структур или взаимодействуют с другими белками или нуклеиновыми кислотами.

 

Почему–то генетики часто пишут, что если оба варианта гена идентичны, то организм считается гомозиготным; если разные – гетерозиготным. На самом деле, все организмы гетерозиготны, так как полностью идентичных генов в популяции человека, видимо, нет. Но обычно белки, кодируемые разными вариантами–аллелями одного гена, обладают одинаковыми функциональными свойствами, то есть замена аминокислоты оказывается с точки зрения функции нейтральной или почти нейтральной. Именно в этом смысл названия гомозиготности. Хотя белки формально разные, но их функция практически неотличима. В реальности, даже значимые мутации очень редко становятся видимыми и приобретают рецессивные свойства. А ещё реже доминантные свойства. Только значимые, видимые мутации могут быть рецессивными или доминантными. Лишь грубые мутации активных или важных белков для деградации ведут к рецессивному, а ещё реже к доминантному фенотипу.

 

А что случится, если произойдет мутация в ДНК, кодирующем тРНК или рРНК? Скорее всего, клетка погибнет. Точно также клетки, видимо, гибнут, если происходят изменения в белках гистонах. Видимые значимые мутации могут быть только болезнетворные. Так называемых положительных мутаций быть не может по причине чрезвычайно сильной способности генома “буферировать” изменения в генотипе.

 

Спонтанные мутации можно разделить на ошибки копирования, транскрипции, созревания, сплайсинга, трансляции, фолдинга (пространственной упаковки), посттрансляционной модификации белка и уровня его обновления. Спонтанные внешние воздействия, такие как деаминирование, депурификация… также ведут к мутациям… Акридины в бактериях вызывают удаление или добавление пары нуклеотидов, 5–бромурацил вызывает замену одного нуклеотида на другой (182).

 

Следовательно, теоретически рецессивность может возникать без изменения строения белка (тот же аминокислотный состав) и даже гена (та же нуклеотидная последовательность в мРНК и в экзонах). При этом в экзонах остается тот же нуклеотидный состав, но возникает внутримолекулярная или межмолекулярная гибридизация (склеивание) между незрелыми мРНК после мутации в интроне.

 

Итак, доминирование и рецессивное состояние – это не просто некое химическое свойство белков. Это опять результат взаимодействия сотен белков на уровне целого организма, а не единичных генов, что опять лежит в русле представлений Лысенко.