Лженаука – генетика. Чума ХХ века.

8.2. Несоответствие генов и признаков

 

 

 

Терентий Мальцев совершенно правильно подметил, что признаков столько, что для того, чтобы все они кодировались своими собственными генами, требуется наследственное вещество невероятной длины. Однако, в проблеме имеется несколько аспектов.

 

1. В природе много признаков и мало генов.

2. Количество генов у большинства живых организмов примерно одинаково. Количество же признаков разнится на много порядков.

3. Все гены практически одинаковы у всех эукариотов.

4. Признак есть результат работы многих генов.

5. Белок не сможет принять зрелую форму без участия функций других белков.

6. Мутации одного гена, но в разных местах, дают разные генотипы.

7. При мутации разных генов может быть один фенотип. Пример – болезнь Альцгеймера.

8. Как правило, несколько генов кодируют один признак.

9. Белки выполняют свои функции только через взаимодействие с другими белками.

10. При мутации белков, которые взаимодействуют друг с другом, как правило, возникает одна болезнь.

11. Больше всего из–за их практической значимости известно о моногенных заболеваниях, но практически все их них могут быть вызваны мутациями не только в одном гене.

 

Разберем эти положения несколько подробнее. Действительно, число генов у живых организмов довольно невелико и варьирует в довольно небольших пределах. У человека 31185 генов (243). Википедия даёт цифру 20000–25000.

 

Генетически человек и его ближайший предок шимпанзе [С чего это автор взял? Неужто верует в Дарвина? – отстоя.NET] практически не отличаются друг от друга. Последовательности их ДНК сходны более чем на 98 процентов. Практически все гены человека имеются и у шимпанзе. Гены шимпанзе отличаются от аналогов из человеческого генома всего на несколько нуклеотидов. Только в августе 2009 года найдены три гена которые присутствуют только в ДНК людей, но отсутствуют у шимпанзе. Да и то, функция этих генов покя не ясна.

 

Интересно, что у мыши, человека, рыбы фугу (рыба шар) количество генов практически одинаково – 30000 – 40000. У дрожжей 6000 генов. У некоторых бактерий насчитывается 12000 генов (185). Геном дрозофилы содержит 10000 генов, кодирующих белки и РНК. При этом 95% ДНК плодовых мушек составляют некодирующие участки (92). Бактериальные геномы содержат примерно от 500 генов у микоплазм до почти 5000 генов у кишечной палочки. Анализ генома кишечной палочки выявил 4909 генов, из которых 4288 кодируют белки, но функции 38 процентов из них пока неизвестны. На долю блока контроля метаболизма приходится свыше 1047 известных генов (около 25 процентов). Интересно, что эти 1047 генов контролируют 804 известных фермента и 988 известных метаболических реакций. В клетке Е. соli содержится около 3000 различных белков, а в организме человека насчитывается свыше 50000 разнообразных белков. Сплайсинг может чуть сгладить разницу между числом признаков и количеством генных продуктов, но никогда не сможет объяснить все разнообразие признаков, число которых гораздо больше 40000.

 

Далее. Гены в самых разных организмах практически одинаковы (200). Сейчас установлено, что хотя все организмы разные, они имеют практически один и тот же набор генов. У всех организмов, имеющих ядро, набор генов, по сути, одинаков. Возьмите 5 белков гистонов. Они практически одинаковы. Они не имеют интронов и наиболее консервативны. Или возьмите ферменты пластинчатого комплекса Гольджи. Гены все одинаковы, а признаки разные. Вот это–то и не может объяснить современная генетика.

 

В геноме имеются также 4 вида рибосомальных РНК (рРНК), несколько десятков транспортных РНК (тРНК) и так называемых малых ядерных РНК. В генах, кодирующих РНК, отсутствуют интроны.

 

Есть так называемые ДНК–связанные белки – это белки, непосредственно взаимодействующие с ДНК. Они обычно обладают свойствами так называемых транскрипционных факторов или репрессоров. В разных ДНК–связывающих белках встречаются сходные трехмерные элементы. И все эти древние гены практически одинаковы у самых разных живых организмов. Особенности в их строении есть, но они никак не могут объяснить то огромное количество фенотипических отличий, которые имеются, например, между пшеницей и человеком. Шимпанзе на 98,5% сходно по нуклеотидному составу ДНК с человеком (182, с.100).

 

Каждый признак кодируется несколькими генами. Множество генов задействовано в любой дорожке, реализующей информацию, заложенную в гене. В дорожке «ген – белок – функция – признак» участвует также и окружающая среда. Как я показал выше, сложность и неопределенность в работе генетического аппарата не кончается на уровне генов и белков. Она продолжается на уровне признаков животного. Попробуйте ответить, какой ген ответственен за передачу носа с горбинкой или за кривые ноги, и вы поймете, что генетики этого просто не знают. Или какой ген отвечает за родинку на носу? Гена прямого носа, морщинистости хвоста, гена мочки уха не существует. Прослеживается только связь гена мутированного и нормального гена внешних признаков.

 

Современная молекулярная биология ясно показывает, что большая фракция генов в популяциях полиморфна, они существуют в любой популяции в нескольких относительно общих формах (188). Каждый признак кодируется информацией, записанной во многих генах.

 

Гены белков, участвующих в одном и том же метаболическом процессе, часто образуют скопления (кластеры). Но те же гены в другом виде живых организмов могут подобные кластеры не образовывать (185). У эукариот многие гены дублированы, т.е. образуют мультигенные семейства, или имеют более сложную фрагментарную структуру. Так, у человека семейство глобинов содержит свыше десятка генов и псевдогенов, локализованных несколькими тесными тандемными группами (а-подобные, р-подобные, миоглобины). Многократно повторены гены рРНК, тРНК, гистонов, интерферонов, гормона роста, актинов, тубулинов и т.д. В мультигенных семействах (особенно тандемных) идут сложные внутренние процессы дупликации, дивергенции, конверсии, неравного кроссинговера и т.д., которые создают или нивелируют разнообразие генов (91/86). Гены эукариот содержат экзоны (иногда их называют цистронами – кодирующие участки) и интроны (некодирующие участки). Число интронов в гене варьирует от 2 до нескольких десятков. Долгое время считалось, что интроны есть попросту шум. А недавно рухнула ещё одна догма, теперь уже молекулярной биологии – было установлено, что транскрипция – процесс считывания информации с ДНК – может идти в обоих направлениях с одной и той же точки старта (промотора).

 

Изменения белков, которые они претерпевают после синтеза первичной цепи аминокислот, зависят от других генов. Если, например, убрать ген фермента трансферазы, присоединяющего остатки сахаров, и затем убрать сахар, который он присоединяет, или добавить сахар в избытке, то будут ошибки и фенотип резко изменится. Формирование внешних признаков определяется сложнейшим взаимодействием сотен, а то и тысяч разных белков. Пример – группы крови (см. Приложение_IX).

 

Признак определяется множеством генов и никто не знает механизм их взаимодействия при этом. Это только у бактерий и вирусов ген–признак или мутации, как у вирусов. Повреждение одного и того же гена может дать в одном случае рост опухоли, а в другом – ее подавление. Это зависит от уровня синтеза других белков. Кстати, вирус использует геном хозяина, то есть тоже зависит от сочетаемости генов внутри генома хозяина. Как только мы начинаем поиск всех этих закономерностей, мы будем оперировать чисто биологическими терминами. Точно также, при описании работы рибосомы (это машина для синтеза белка) мы немедленно сталкиваемся с химией, со всеми этими силами Ван Дер Ваальса и т.д.

 

Кроме того, очень часто невозможно вообще понять, почему возникают фенотипические изменения. Возьмем, например, синдром Дауна, то есть трисомию по 13 паре хромосом. Имеется четкий набор признаков, хотя никаких мутаций нет и все белки функционируют нормально. Ни одна мутация в единичном гене и ни один единичный ген не способен объяснить этот синдром. Возможно, играет свою роль то, что соотношение между генами изменяется (например, 50% на 50% меняется на 33% к 67%).

 

Одна и та же мутация может давать очень непохожие друг на друга формы заболевания. Например, мутации онкогена, белка п58, могут вести к апоптозу (самоубийству клеток) в раковых клетках или к безудержному размножению в зависимости от свойств других онкогенов в данной клетке (см. Приложение_VII). С другой стороны, мутации в одном и том же прионном белке ведут к совершенно разным заболеваниям (143). Наконец, одно и то же или сходное заболевание может быть вызвано мутациями в совершенно разных генах. Обычно это гены белков, которые в клетках взаимодействуют друг с другом.

 

Разные мутации одного и того же гена в разных комбинациях генов могут дать совершенно разные фенотипы и заболевания. Разные мутации в белке–прионе дают разные фенотипы (143), ведут к совершенно разным заболеваниям (персональное сообщение Роберто Киезы. R. Chiesa, 143). А, например, мутации в белке СФТР могут давать поражение легких или поражения кишечника (см. Приложение_Х). Описано 1500 мутаций в молекуле СФТР (см. Приложение_Х), которые вызывают муковисцидоз. Но проявления болезни совершенно разные (172). И это при одном и том же составе генов!

 

Один и тот же фенотип может быть вызван разными мутациями в совершенно разных генах. Льюис (цит. по 182) показал, что мутации, вызывающие одинаковый фенотип, могут быть либо в одном и том же, либо в разных генах. Нередко один и тот же признак может быть вызван мутацией в сотне разных генов. Болезь Альцгеймера, которая случилась у президента США Рейгана, может быть вызвана мутацией, по крайней мере, в 20 генах.

 

Опухоль меланомы вызывается более 30 тысячами различных мутаций, ошибками генетического кода, а рак легкого вызывается 23 тысячами мутаций.

 

Признаки зависят не от гена, а от повреждающей мутации в единственном гене. Нет признака, определяемого одним геном. Может быть мутация одного, а чаще цепи генов, ведущая к появлению нового признака, но этот признак появляется только в данном геноме. Но к чему приведет мутация, зависит от генома.

 

Вот характерный пример, показывающий, что тысячи генов вовлечены в формирование даже одного признака. Когда в дрозофиле стимулировали активность гена, который носит название «безглазый» (eyeless), то глаза у нее выросли на крыльях, ножках, антеннах и других тканях. То же самое произошло, когда в геном дрозофилы пересадили гомологичный ген “безглазости” от мышей, но глаза образовались при этом не мышиные, а мушиные. Развитие глаза в геноме дрозофилы контролируется 2500 генами (182, с.96). Ген “безглазости” оказался регуляторным геном.

 

С другой стороны, введения недостающих генов в сетчатку оказалось вполне достаточно для восстановления нормального зрения у взрослых обезьян, которые страдали цветовой слепотой с рождения (23). В эксперименте на двух самцах обыкновенных беличьих обезьян, у которых цветовая слепота широко распространена и обусловлена отсутствием генов, кодирующих светочувствительные рецепторы, удалось восстановить восприятие цвета у взрослых подопытных обезьян при помощи генной терапии. В сетчатку обезьян, неспособных воспринимать красный цвет, ввели человеческий ген, кодирующий отсутствовавший у животных цветочувствительный пигмент. Спустя 20 недель у обезьян восстановилась способность видеть красный цвет. Восприятие красного цвета сохранялось у животных в течение более чем двух лет после экспериментальной процедуры.

 

Одни и те же белки у разных видов могут играть разную функциональную роль. Окситоцин и вазопрессин практически одинаковы у разных животных. Они действуют очень похоже, но по–разному. У всех изученных животных эти пептиды регулируют общественное и половое поведение, хотя конкретные механизмы их действия могут различаться у разных видов. Окситоцин у позвоночных регулирует половое поведение самок, а также их привязанность к детям и брачному партнеру. Вазопрессин влияет больше на самцов, в том числе на их агрессивность, территориальное поведение и отношения с самками. У моногамных полевок самки на всю жизнь привязываются к своему избраннику под действием окситоцина. У самцов того же вида супружеская верность регулируется вазопрессином и дофамином. Введение вазопрессина самцу моногамной полевки быстро превращает его в любящего мужа и заботливого отца. Однако на самцов близкого вида, для которого не характерно образование прочных семейных пар, вазопрессин такого действия не оказывает. Очевидно, нейропептиды не создают тот или иной тип поведения из ничего, а только регулируют уже имеющиеся поведенческие стереотипы (150).

 

Итак, хотя догма в формальной генетике утверждает, что ген реализуется в признаке, на самом деле это не так. Практически нет прямой связи признака и гена (кроме, может быть, бактерий, которые секретируют фермент). Нет никакого гена “безмитохондриальности”, что мы видим у микроспоридий. Есть ген, который вызывает у гороха морщинистость горошин, но он не вызывает морщинистости у риса. На самом деле, никаких единичных генов, кодирующих наследуемые напрямую сложные фенотипические признаки на уровне целостного организма и доступных для генетического изучения во времена Моргана тоже нет и не было. Нет признаков, определяемых одним геном. Может быть мутация одного, а чаще нескольких генов, ведущая к появлению рецессивного признака (см. Приложение_VI). Закон о неделимых частичках наследования тоже оказался неверен. Они делимы – белки могут иметь разные изоформы….

 

Но только лишь в нескольких случаях природе удалось добиться получения прямой связи между строением гена и получающимся признаком (Мендель, Де Фриз…). Любая наследственная информация реализуется через целый геном. Потеря признака часто есть вредоносная мутация гена, но не наоборот. Сам по себе ген без других генов ничего не значит. Пересадка так называемого гена морщинистости гороха в геном риса не приводит к появлению морщинистости у рисовых зерен.