Лженаука – генетика. Чума ХХ века.

9.4. Генетика прокариотов и вирусов

 

 

 

Законы наследования бактерий, микроскопических грибов, актинофагов, вирусов животных и растений, бактериофагов и других микроорганизмов существенно отличаются от закономерностей наследования, обнаруженных у животных и растений. Например, у грибов и водорослей, сохранивших половой процесс, главная особенность состоит в том, что продукты мейоза (споры) остаются соединенными в определенном порядке, и после раздельного высева этих спор можно непосредственно изучать генотип каждого продукта мейоза.

 

До 40-х годов ХХ века считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются законы Менделя и хромосомная теория наследственности. Затем американские генетики О.Т.Эйвери, К.Мак-Леод и М.Маккарти в опытах на пневмококках доказали, что материальным носителем наследственности в бактериях тоже служит ДНК.

 

В 1946 был открыт половой процесс у бактерий (конъюгация). Оказалось, что бактерии выделяют в окружающую среду фрагменты своей ДНК, могут поглощать такие фрагменты, выделенные другими бактериями (в том числе и относящиеся к совершенно другим видам), и «встраивать» эти кусочки чужого генома в свой собственный. Затем был открыт околополовой процесс грибов. И наконец, был обнаружен эффект переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага — генетическая трансдукция.

 

У прокариотов есть свои особенности передачи наследственной информации. Обычно ДНК прикреплены к плазматической мембране, а вокруг последней могут откладываться белки и полисахаридные цепи. Важнейшая, основополагающая особенность эукариотических клеток связана с расположением генетического аппарата в клетке. Генетический аппарат всех эукариот находится в ядре и защищён ядерной оболочкой (по-гречески “эукариот” значит имеющий ядро). ДНК эукариот линейная (у прокариот ДНК кольцевая и находится в особой области клетки — нуклеоиде, который не отделён мембраной от остальной цитоплазмы). Она связана с белками-гистонами и другими белками хромосом, которых нет у бактерий.

 

Оказалось, что мутации возникают у бактерий независимо от условий культивирования. Более того, в больших популяциях бактериальных клеток мутации возникают спонтанно. В жизненном цикле эукариот обычно присутствуют две ядерные фазы (гаплофаза – один набор генов, и диплофаза –  два набора генов). Первая фаза характеризуется гаплоидным (одинарным) набором хромосом, далее, сливаясь, две гаплоидные клетки (или два ядра) образуют диплоидную клетку (ядро), содержащую двойной (диплоидный) набор хромосом. Иногда при следующем делении, а чаще спустя несколько делений клетка вновь становится гаплоидной. Такой жизненный цикл и в целом диплоидность для прокариот не характерны.

 

Многие бактерии имеют плазмиды, которые являются небольшими колечками ДНК. Они содержат всего несколько десятков генов. У некоторых бактерий в готовую молекулу РНК добавляются основания уридина. Иногда конечная молекула почти в два раза больше кодируемой в ДНК, и последовательность нуклеотидов в конечной молекуле даже не напоминает последовательность в ДНК.

 

ДНК прокариот представляют собой более короткие (до 5×106 пар оснований), чем у эукариот, молекулы, расположенные в цитоплазме, почти не включающие интронов и, в отличие от эукариот, имеющие вид кольца. С другой стороны, прокариоты имеют меньше схем считывания, чем вирусы, и большие вставки между генами, чем вирусы.

 

Если несколько ферментов участвуют в выполнении какой-то одной определенной задачи, например, последовательно катализируют цепь биохимических реакций, расщепляющих, например, лактозу или синтезирующих, например, лейцин или триптофан, то очевидно, что синтез каждого из этих ферментов должен быть скоординирован с синтезом других ферментов этого метаболического процесса, иначе единый метаболический путь не будет работать нормально. У прокариот такая координация достигается тем, что гены таких ферментов расположены рядом (без “пробелов”, останавливающих транскрипцию) и транскрибируются они с единой регуляторной зоны (в которой расположены промотор и оператор) в виде особой полицистронной (с множеством экзонов) мРНК. Такая организация регуляторных и структурных генов названа опероном.

 

Чтобы оперон заработал, РНК полимераза должна присоединиться к промотору, а репрессор, под действием определенного регуляторного сигнала –  отсоединиться от оператора и, тем самым, открыть РНК полимеразе путь для транскрипции структурных генов. В геноме бактерий расположены тысячи оперонов, в которых, в свою очередь содержатся структурные гены, кодирующие белки (или стабильные РНК), участвующие в выполнении какой либо единой функции.

 

Особенность полового процесса у бактерий состоит в том, что в клетку-реципиент передается, как правило, только часть генетического материала из клетки-донора, в результате чего образуется частично диплоидная (с двумя наборами хромосом) зигота. У бактерий известно несколько механизмов передачи генетического материала.

 

Наиболее совершенная форма полового процесса у бактерий — конъюгация, детально изученная у кишечной палочки. Конъюгация происходит при непосредственном контакте между двумя клетками, если в одной из них присутствует специфический половой фактор, или фактор скрещиваемости (фертильности, плодовитости). Половой фактор содержит ДНК и может существовать в клетке либо автономном, либо в интегрированном состоянии (включенным в первом случае при конъюгации). В клетку-реципиент переходит только половой фактор.

 

Во втором случае половой фактор способствует направленному переносу генетического материала из клетки-донора в клетку-реципиент. Как правило, при этом происходит передача только части генома донора, и лишь крайне редко передается вся информация донора вместе включенным в нее половым фактором. Между фрагментом донорной ДНК и ДНК реципиента может произойти обмен гомологичными генетическими участками — кроссинговер, приводящий к возникновению рекомбинантов, т. е. клеток с измененным сочетанием признаков.

 

Перенос генетического материала при конъюгации — строго ориентированный процесс, при котором последовательность передачи генов (а значит, и вероятность их участия в кроссинговере, то есть, обмене участками хромосом) целиком зависит от расположения генов в и точки интеграции (включения) полового фактора. При переходе полового фактора в автономное состояние гены, расположенные рядом с точкой интеграции, могут объединиться с половым фактором и в дальнейшем передаваться с ним как единое целое, превращая клетки-реципиенты в диплоиды по данному генетическому участку.

 

Этот процесс переноса генов совместно с половым фактором, который называется сексдукцией, также может привести к возникновению рекомбинантов. Другой механизм возникновения рекомбинантов у бактерий — трансдукция — осуществляется при посредстве т.н. умеренных бактериофагов, которые способны к особому виду симбиоза с бактериями — лизогении. В лизогенных бактериях ДНК умеренного фага интегрирована с ДНК бактериальной клетки и реплицируется одновременно с ней. Такая скрытая форма присутствия фага (профаг) может сохраняться в течение многих клеточных поколений, однако изредка профаг переходит в вегетативное состояние (т.е. начинает размножаться) и разрушает бактерию. При этом возможен захват небольшого фрагмента ДНК клетки-хозяина и последующий его перенос в другую клетку, в которой перенесенный участок генома может вступить в генетический обмен с гомологичной областью клетки-реципиента.

 

Обычно при трансдукции прогены расположены в непосредственной близости от места локализации профага в бактерии. Однако, некоторые фаги осуществляют трансдукцию, при которой любой участок генома бактерии с равной вероятностью может быть перенесен в другую клетку. Иногда сам процесс лизогенизации, т.е. включения умеренного фага в геном бактерии, может сопровождаться приобретением клеткой новых свойств, например, вирулентности.

 

Еще один тип полового процесса у бактерий, называемый трансформацией, — перенос генетического материала без посредства полового фактора или умеренного бактериофага с последующим возникновением рекомбинантов (вследствие генетического обмена между проникшим в клетку фрагментом ДНК и ДНК клетки-реципиента). Бактерии могут контролировать экспрессию генов, что позволяет им адаптироваться к окружающей среде.

 

Фрагменты ДНК могут поглощаться бактерией из окружающей среды и встраиваться в свою ДНК. Куски ДНК могут переноситься фагами. Кроме того бактерии могут обмениваться фрагментами ДНК по межклеточным мостикам, которые образуются между бактериями родственных видов. Недавно показано, что бактерии подвергаются старению, а не имеют вечной жизни (224).

 

Рибосомы прокариот имеют структуру, аналогичную рибосомам эукариот, но они несколько мельче, чем эукариотические (коэффициенты седиментации полной рибосомы 70S, а субчастиц – 30S и 50S). Рибосомы митохондрий и хлоропластов из эукариотов близки к прокариотическим.

 

Синтез белка у прокариот в основном аналогичен синтезу у эукариот. У прокариот стартовая тРНК всегда несет N-формилметионин, у эукариот – метионин. Первую фазу трансляции – инициацию – можно разделить на несколько стадий. На первой стадии два белка, так называемых фактора инициации IF-1 и IF-3, связываются с 30S-субчастицей рибосомы. Затем еще один белковый фактор, IF-2, образует комплекс с молекулой макроэргического соединения ГТФ, что облегчает ассоциацию 30S-субчастицы с мРНК и связывание тРНК, соответствующей инициирующему кодону. В завершение 50S-субчастица связывается с вышеупомянутым комплексом. На третьей и четвертой стадиях идет освобождение факторов инициации и гидролиз связанного с IF-2 ГТФ до ГДФ и неорганического фосфата. Таким образом, связанный с 70S-рибосомой инициирующий комплекс содержит формилметионин-тРНК в тРНК-связывающем участке. Второе место связывания во время этой фазы трансляции остается свободным.

 

Если у эукариот процессы синтеза и созревания РНК и белков протекают в различных отделах клеток и механизмы их регулирования не зависят один от другого, то у прокариот, напротив, эти процессы значительно проще и взаимосвязаны.

 

Бактерии имеют защиту от фагов. Они изменяют рецепторы, чтобы вирус не мог пристыковаться. Они производят рестрикционные нуклеазы, которые распознают и режут чужую ДНК, которая ведёт свое происхождение из вирусов–фагов.