Лженаука – генетика. Чума ХХ века.

12.3. Генетика вида

 

 

 

Наиболее существенной характеристикой вида является то, что особи разных популяций одного вида могут скрещиваться и давать плодовитое потомство в 95% случаев. У эукариот избирательность полового скрещивания стала настолько строгой, что это привело к появлению относительно замкнутых группировок, которые мы называем биологическими видами. Что касается тех организмов, где нет четких критериев дифференциальной диагностики вида, то там вид – условность, помогающая делать правильные выводы. У прокариот таких изолированных на основе полового размножения группировок нет. Поэтому для микробов и вирусов вид – это нечто классификационное, используемое для удобства обдумывания и прогнозирования результатов опытов. Поэтому, например, некоторые исследователи предлагают считать всех прокариот одним биологическим видом.

 

Генетическая несовместимость видов, т.е. их неспособность производить плодотворное потомство или вообще потомство при скрещивании называется межвидовым барьером, или барьером межвидовой совместимости. Ещё этот признак носит название репродуктивной изоляции.

 

Способности скрещиваться и давать плодовитое потомство должны проверяться на опыте. Хотя это необходимый, но не достаточный признак вида. Однако имеются переходные формы и, например, способность скрещиваться не такая уж редкость для представителей разных видов одного рода – волк и шакал, лошадь Пржевальского и зебра (их там вообще три вида существуют и между собой могут скрещиваться). Поэтому гены могут распространяться из одной популяции вида в другую, образовывать новые комбинации. Но гены не могут перейти из одного вида в другой из-за обособленности видов друг от друга барьерами репродуктивной изоляции.

 

Развитие генетических представлений позволило широко ввести в практику определения видов цитогенетические и молекулярно-биологические критерии. Каждый вид имеет свойственный ему набор хромосом — кариотип, характеризующийся определенным числом хромосом, их формой, размерами и строением.

 

Использование цитогенетического критерия позволяет надежно различать виды, почти не отличающиеся по морфологическим признакам, — виды-двойники. Так, анализ хромосомного набора позволил разделить прежде воспринимавшийся как единый вид полевки обыкновенной на 4 вида: обыкновенная полевка — 46 хромосом, восточноевропейская — 54 хромосомы, киргизская – 54 хромосомы (но иной морфологии, чем у восточноевропейской полевки) и закаспийская – 52 хромосомы (121).

 

Несмотря на большие разрешающие возможности, цитогенетические и молекулярно-биологические критерии также не являются абсолютными. Встречаются случаи, когда относительно далекие виды (например, почти все представители семейства кошачьих) имеют одинаковые кариотипы. С другой стороны, локальные популяции одного вида (например, обыкновенной бурозубки) могут значительно различаться по числу и форме хромосом. Разные гены также различаются по степени изменчивости. Так, например, ген ядерного белка гистона Н1 человека почти не отличается от гомологичного ему гена гороха.

 

Понятно, такие эволюционно консервативные (то есть практически не изменившиеся за время эволюции) гены мало что говорят о различиях не только среди близких видов, но и далеких. В то же время в геноме человека, животных и растений обнаружены чрезвычайно изменчивые последовательности ДНК, которые могут быть разными даже у родных братьев. Эти последовательности оказались незаменимыми в криминалистике для идентификации личности (геномная дактилоскопия), но малопригодными для различения видов.

 

Сравнительная геномика с помощью мощнейших методов компьютерного анализа анализирует и сравнивает гены и геномы разных организмов. По отбору можно судить об эволюции организмов. Есть специальные компьютерные программы, строящие дерево эволюции того или иного белка. То есть большинство белков во всех организмах почти одинаковы. За последние годы разработано несколько методов, значительно увеличивающих возможности четкого определения молекулярно-биологических критериев вида. К их числу относятся сравнение последовательностей ДНК, сравнение структур однотипных молекул белков (как физико-химическими, так и иммунологическими методами).

 

Почему виды не скрещиваются? Значительной преградой служит гибель гамет или их неспособность к оплодотворению при попадании к особям других видов. У многих цветковых растений чужеродная пыльца не способна прорастать на рыльцах. Это явление иногда называют физиологической или генетической изоляцией (121).

 

Вообще–то ничего сверхъестественного в нескрещивании нет. Чтобы разойтись в мейозе в разные гаметы, гомологичные хромосомы (одинаковые, но одна от мамы, а другая от папы) должны найти друг друга и спариться. Делают они это при помощи гомологической рекомбинации. Их в мейозе слегка нарезают на кусочки и, чтобы починиться, кусочки эти ищут в геноме последовательность ДНК, идентичную той, что была в месте разрыва. Находят ее, естественно, на гомологичной хромосоме. Используют ее, как матрицу, чтобы починиться, тем самым и спариваются. А заодно кусками обмениваются.

 

Если хромосома, например, как следует “побита” рентгеном, куски вырваны и вшиты назад задом наперед, или не в то место где раньше были, – пишут в Интернете – то спариться такая побитая хромосома с исходной не может. Поэтому она и ее гомолог разойдутся в гаметы случайным образом. Если такая хромосома одна, то в половине случаев обе гаметы получат по копии. Если таких хромосом 23, вероятность снабдить гамету полным набором хромосом ничтожно мала и потомство от скрещивания разных видов, различающихся перетасовками в нескольких хромосомах, становится бесплодным.

 

То есть хромосомы – это ещё один ограничитель видов. Однако, хромосомные проблемы преодолеваются. Нескрещиваемость близких видов можно обойти путем увеличения кратности набора хромосом, увеличением плоидности. Например, если сделать тетраплоидность, то можно скрещивать виды, но как все это будет развиваться, зависит… После полиплоидизации, если удается найти такую комбинацию разделения и спаривания хромосом, что гены–аллели становятся комплементарны, то может образоваться новый вид.

 

Так, скрещивается редька с капустой, если у них предварительно индуцировать полиплоидизацию того и другого. При этом набор хромосом может быть удвоен с помощью колхицина. Если включаются мобильные элементы, то возможна комбинация перераспределения генов, когда в каждой хромосоме есть партнер, с которым она может спариться в мейозе и правильно разойтись в гаметы. И наоборот, все что нужно, чтобы особи перестали скрещиваться, – несколько хромосомных перестроек, чтобы бывшие гомологичные хромосомы не могли спариваться в мейозе. Если они не могут спариться, то и правильно разойтись в гаметы при мейозе не могут.

 

Как пишут на Интернет–форумах, “для каждой хромосомы дрозофилы созданы специальные хромосомы-”противовесы”, перетасованные достаточно сильно, чтобы не спариваться и не рекомбинировать с диким гомологом. Хромосомы-”противовесы” используются для поддержания коллекций летальных мутаций. В нормальной хромосоме коллекционная летальная мутация, в хромосоме – “противовесе” другая летальная мутация. Потомство жизнеспособно, только если получило коллекционную хромосому и хромосому-противовес. Две коллекционные хромосомы – смерть. Два противовеса – смерть. А рекомбинация, в которой могла бы возникнуть хромосома, очищенная от обеих летальных мутаций, не происходит. Все, что нужно, чтобы собрать новый “вид” дрозофилы, который не будет скрещиваться с диким, – убрать из хромосом-противовесов летальные мутации и собрать муху, заменив все дикие хромосомы противовесами. Причем по фенотипу эта дрозофила не будет отличаться от дикой совсем”.

 

Итак, каждый критерий в отдельности недостаточен для определения вида, но в совокупности они позволяют точно выяснить видовую принадлежность живого организма. Вид – это классификация, где основой сейчас является генетическая совместимость. Поэтому по отношению к бактериям границы видов относительны. Поэтому их называют штаммами. Для вирусов также имеется лишь очень грубая классификация видов.