Этот “цифровой” физический мир

 

 

Раздел 4. ЭЛЕКТРИЧЕСТВО И СТРУКТУРЫ ВЕЩЕСТВА (I).

 

 

4.1  Электрические заряды, как противофазные квантовые пульсации.

 

       По прошествии нескольких столетий активного изучения электрических явлений, официальная физика не может сказать о сущности электрического заряда ничего сверх того, что заряды бывают двух типов, причём разноимённые заряды притягиваются, а одноимённые – отталкиваются. Такой уровень понимания имелся уже в самом начале эпохи изучения электричества, и до сих пор серьёзного продвижения в этом вопросе не произошло.

 

       О каком-то важном изъяне в традиционном подходе к электричеству свидетельствуют следующие энергетические парадоксы. Считается, что заряженные частицы взаимодействуют друг с другом на расстоянии, и что это взаимодействие характеризуется особой формой энергии – электрической. Кулоновская энергия взаимодействия пары элементарных зарядов, находящихся друг от друга на расстоянии ядерного масштаба, сравнима с собственной энергией электрона mec2, где me – масса электрона, c – скорость света. Спрашивается [Г1]: куда же исчезает кулоновская энергия взаимодействия электрона и позитрона при их аннигиляции? Ведь при таком событии, как полагают, в энергию гамма-квантов превращается лишь собственная энергия электрона и позитрона! Более того: полагают, что такое свойство, как электрический заряд – ответственное за взаимодействие с другими зарядами на расстоянии – некоторым образом распределён по объёму даже элементарной заряженной частицы, и это распределение описывается с помощью т.н. формфакторов [Ф1]. Если электрический заряд электрона размазан по его объёму, то на каждый элемент этого объёма приходится какая-то часть этого заряда. По традиционной логике, эти элементы объёма электрона должны расталкиваться – а тогда следует допустить наличие какого-то контр-воздействия, которое сдерживает электрон от того, чтобы он взорвался. Мало того, что при таком допущении подмачивалась бы репутация электрона как элементарной частицы. Энергии разрывающих и сдерживающих электрон воздействий превышали бы его собственную энергию на порядки. Выходит, что и эти чудовищные энергии бесследно исчезали бы при аннигиляции!

 

       Эти или аналогичные несуразицы неизбежны, пока считается, что свойства порождать взаимодействия частиц вещества на расстоянии – и, соответственно, порождать энергии этих взаимодействий! – присущи самим частицам вещества. Порочность такого подхода мы уже проиллюстрировали для случая феномена тяготения (Раздел 2). Теперь мы постараемся проделать то же самое для случая взаимодействия электрических зарядов на расстоянии. Мы увидим, что физика электромагнитных явлений радикально упрощается, если допустить, что, в отличие от массы, электрический заряд не является энергетической характеристикой.

 

       Вспомним, что, по логике «цифрового» мира, электрон является квантовым пульсатором (1.4). Квантовые пульсации – это неопределённо долго длящаяся цепочка циклических смен всего двух состояний. Эта, простейшая в «цифровом» мире, форма движения обладает энергией, которая зависит только от частоты f квантовых пульсаций: E=hf, где h – постоянная Планка. Эту же энергию можно выразить через массу квантового пульсатора, и, для случая электрона, записать

 

mec2=hfe,         (4.1.1)

 

где fe – частота квантовых пульсаций электрона, которую мы называем электронной частотой. Из формулы (4.1.1), зная значения фундаментальных констант, несложно получить, что электронная частота fe=1.24×1020 Гц. Нас неоднократно спрашивали: какую форму имеет электрон, будучи квантовым пульсатором. На наш взгляд, этот вопрос некорректен: понятие формы имеет смысл для структурных образований из элементарных частиц, но не для отдельной элементарной частицы. Тем не менее, применительно к элементарной частице, имеет чёткий смысл её характерный пространственный размер, который мы определяем как произведение периода её квантовых пульсаций на скорость света – что даёт комптоновскую длину волны частицы h/mc. У электрона комптоновская длина h/mec равна 0.024 Ангстрем.

 

       Теперь можно сказать, как мы представляем, что такое электрический заряд: частица имеет электрический заряд, если в дискретном спектре её квантовых пульсаций имеется компонента на электронной частоте. Мы говорим «в спектре», потому что в отличие от электрона, имеющего лишь одну компоненту квантовых пульсаций, существуют частицы – например, протон (4.6) – у которых этих компонент несколько. Конечно, наличие у частицы квантовых пульсаций на электронной частоте – ещё не полностью определяет её электрический заряд: ведь что-то должно задавать ещё и знак заряда. Нам представляется, что два противоположных знака электрического заряда задаются двумя противоположными фазами квантовых пульсаций на электронной частоте. Положительные заряды «пульсируют» синфазно, и отрицательные заряды «пульсируют» синфазно – но те и другие пульсации сдвинуты по фазе на 180о друг относительно друга. Разумеется, такое отождествление знака заряда – по фазе квантовых пульсаций – имеет смысл при одной и той же частоте этих пульсаций. А ведь частоты квантовых пульсаторов, по логике частотных склонов (1.6), зависят от гравитационного потенциала: электронная частота, не будучи исключением, увеличивается при перемещении вверх по местной вертикали. Поэтому, на наш взгляд, на каждом уровне любого частотного склона задана не только электронная частота, но и две противоположные текущие фазы квантовых пульсаций на этой частоте – для идентификации положительных и отрицательных электрических зарядов.

 

       Почему – «для идентификации»? Потому что сами по себе квантовые пульсации на электронной частоте – с фазой положительного или отрицательного заряда – не порождают никаких взаимодействий на расстоянии. Эти пульсации у частицы являются лишь меткой, идентификатором, для пакета программ, который управляет свободными заряженными частицами так, что у нас создаётся иллюзия их взаимодействия друг с другом. Если частица имеет идентификатор положительного или отрицательного заряда, то она оказывается охвачена управлением этого пакета программ. Алгоритмы этого управления свободными зарядами, вкратце, таковы. Во-первых, двигайтесь так, чтобы выравнивались отклонения от равновесного пространственного распределения зарядов – при котором средняя плотность положительных зарядов везде равна средней плотности отрицательных зарядов (хотя значение этой плотности может отличаться от места к месту). Выравнивание объёмных плотностей разноимённых зарядов – это проявление действия «электрических сил». Во-вторых, двигайтесь так, чтобы, по возможности, компенсировались коллективные движения зарядов, т.е. чтобы компенсировались электрические токи. Компенсация коллективных движений зарядов – это проявление действия «магнитных сил». Электромагнитные явления, происходящие по этим алгоритмам, энергетически обеспечены тем, что в кинетическую энергию частиц превращается часть их собственной энергии (4.4).

 

       При таком подходе к электрическому заряду – как к идентификатору для программного управления – совершенно ясно, что электрический заряд не является энергетической характеристикой. Мы немедленно устраняем следующие из традиционного подхода проблемы, связанные с «исчезновением» зарядовой энергии при аннигиляции электрон-позитронной пары.

 

       Тут же проясняется ещё такое важное свойство элементарного электрического заряда, как его целостность: либо частица им обладает, либо не обладает. Т.е., элементарная частица не может иметь дробную часть элементарного электрического заряда – ибо идентификатор на части не разделяется. Гипотетические «кварки», якобы, обладающие электрическими зарядами, дробными от элементарного – это чистая придумка теоретиков, которые умозрительно раздробили то, сущность чего до сих пор не представляют.