Украденное Открытие

 

Разоблачение мирового заговора.

 

Глава пятая.

 

 

       Справедливости ради, надо поговорить и о том, что «недооценили». Есть, видите, какие-то завихрения Персикова. Это тот второй академик, что плюнул на Нобелевскую премию, хотя деньги, наверное взял. Да и не посмел бы не взять. Так что это не плевок, а скорее фига в кармане. Какие они все робкие! Хотя… нельзя осуждать. Каждому, наверное, есть чего бояться. Всемирная мафия, шутка сказать!

       При сильных магнитных полях эти вихри сталкиваются и в них получается сопротивление. Вот из-за этого предсказанного мной «эффекта Гамбургера-Персикова».

       Отмазка так себе. Грубо, но надежно. Как мы видели на примере бензина, люди очень легко удовлетворяются самыми простыми объяснениями, и не задают много вопросов, даже когда их заставляют раскошеливаться.

       Но я уже не мог поверить так просто. Самое легкое замечание, это то, что с завихрениями магнитных полей люди давно научились бороться механическим путем, набирая магнитопроводы из стальных пластин. Почему бы и тут не применить что-то подобное? Второе, о чем, правда, я могу только догадываться, это кулинарные секреты для специалистов.

 

       Но это всего лишь вариации общего рецепта лжи. Суть в том, что врать в цифрах они боятся. Поэтому заметки на тему пагубности этих вихрей, по информативности не превышающие «новости одной строкой» из «Химии и жизни», не содержат ни чисел, ни даже отсылок к работам, указывающим результаты опытов. Буквенные обозначения, для наукообразности, есть, и даже графики есть, а чисел нет. Графики без чисел! Это просто анекдотично. Для лопухов. Ученые же, специалисты, всем, что без цифр просто пренебрегают. Хотя, по-моему, могли бы спуститься с Олимпа и заметить, что это пишут не журналисты «Пионерской правды».

       Словами, в общем-то можно сказать формальную правду. Например (это не цитата): «При достижении некоторой критической величины напряженности магнитного поля сверхпроводимость исчезает. К сожалению, эту проблему известными методами преодолеть пока не удается». Надо ли говорить, что слово «проблема» ученый-физик поймет совсем по-другому, чем мы с вами. И если ему тут, может быть, и есть о чем сожалеть, то нам совершенно не о чем. Потому что если «поднять цифры», то окажется, что потери холода через самую хорошую теплоизоляцию (при разнообразии криогенных технологий и наличии тут же запаса энергии, вовсе нетрудно восполнимые) будут в любом случае в несколько тысяч раз больше, чем нагрев от омического сопротивления в вихрях. Кому, в конце концов, нужен аккумулятор, который в самом деле будет «вечно» хранить энергию? Молиться на него, что ли?

       Кроме того, откроем №2, 1988 и прочтем там черным по белому: «С предельным магнитным полем у новых сверхпроводников все обстоит как раз благополучно. Сверхпроводимость иттрий-бариевой керамики (то есть самой первой и простой – Я.) сохраняется в магнитных полях свыше миллиона эрстед, а в поле 250 тысяч эрстед, достаточном для большинства практических применений, критическая температура перехода снижается лишь на несколько градусов и остается существенно ниже температуры кипения жидкого азота. Но вот с критическим током дела обстоят гораздо хуже. Это одна из самых трудновоспроизводимых характеристик. Чтобы избежать образования зерен, пробовали напылять сверхпроводящую керамику в виде пленки…» и т. д. Могу только сожалеть, что вынужден здесь ограничиться этим общедоступным источником.

 

       Трудно сказать, когда именно возникла идея использовать «вихри Персикова», чтобы сбивать со следу, но только первые несколько лет никаких упоминаний о них, и тем более как о «проблеме» нет. Если бы новые сверхпроводники были так чувствительны к магнитным полям, как вообще ВТСП могли бы обнаружить? Настолько чувствительным, что это делает невозможным ну никакое использование нового открытия. Даже такое, как в демонстрации школьных опытов. Настолько, что спустя 16 лет в списке научных событий того года оно не заслужило себе места рядом с перелетом кого-то куда-то на воздушном шаре. Да, между прочим: висел же постоянный магнит над кольцом из сверхпроводника у учительницы из Англии? Значит, такое магнитное поле выдерживает же самодельный сверхпроводник – причем без всякого экранирования? А зачем его вообще выдерживать? Пользуемся же мы магнитофоном и не боимся, хотя обычный постоянный магнит запросто стирает запись.

       Наконец, смотрим в «Науке и жизни». №8 1991 г. (“путч”, господа, помните?), на странице 27 помещена фотография двухлитрового аквариума с золотой рыбкой, парящий на магните над посудиной с дымящимся жидким азотом – вот, дескать, какие хорошие керамические сверхпроводники с примесью серебра разработали в Токийском Международном техническом центре сверхпроводимости. Тут же сделана ссылка на стр. 151, где читаем «вести из лабораторий» «Сверхпроводимость: конец затишья?» (заметили все-таки затишье?- и то слава богу). «Одна из причин затихания бума – трудности изготовления проводов из новых сверхпроводников… Новый метод Технологического института штата Джорджия напыляет слой керамики на медь в 200 раз быстрее. (Интересно, это ехидство, или они в самом деле верили, что недостаток такого пустякового технического усовершенствования – институт штата Джорджия, скажите пожалуйста! – может тут что-то объяснить?) Первая партия провода пойдет на изготовление электромагнита. Кончится ли теперь затишье в “теплой” сверхпроводимости?» Ха!

 

       На ловца и зверь бежит! Это я по поводу магнитопроводов и борьбы с «завихрениями». Чего только не попадется под руку! Реферативный журнал Украинской Академии Наук (тоже на английском языке, конечно) «Semiconductor Physics; Quantum Electronics & Optoelectronics», Volume 3, №4, 2000 г., статья V. V. Pokropivny etc., Institute for Problems of Material Science, «Lattice of superconducting multilayer monotubes as ideal high-T superconductor». Читаем: «Аннотация: объединяя идеи Литтла и Гамбургера из последних достижений в исследовании нанотрубок, предлагается новый вид материала в качестве перспективных высокотемпературных сверхпроводников на основе плотно упакованной решетки квази-1D сверхпроводящих нанотрубок. Предлагаемая идея состоит в том, что коаксиальные многослойные нанотрубки корреляционного диаметра являются идеальной и природной ловушкой для гашения вихрей Песикова. (вот кто их придумал, завихрения!) Эти квази-1D нанотрубчатые кристаллы предлагается синтезитовать с помощью матриц с использованием цеолитоподобных мембран…» В завершении статьи: «В настоящее время неуглеродные нанотрубки были синтезированы на основе BN, BNC, MoS2 и т.д., за исключением углеродных NT, но не предпринималось известных нам попыток изготовить сверхпроводящие нанотрубки до сего дня. Однако, для достижения этой цели возможности существуют. Изготовление такой композитной нанотрубки является сложным делом, но это только трудность, которая будет платой за решение проблемы первостепенной важности.»

       Ну так что, господа, возможностей не хватает, или решение не нужно?

  

       На эту же тему значительно позже попалась мне и такая заметка в Компьюферре.

«NANOTUBES HINT AT ROOM TEMPERATURE SUPERCONDUCTIVITY

19:00 28 November 01 Adrian Cho

       Тонкие углеродные трубки могут проводить электричество без сопротивления при температурах вплоть до точки кипения воды. Такие трубки будут первым сверхпроводником, работающем при комнатной температуре. Гуо-Менг Жао и Йон Шен Вонг из Хьюстонского университета в Техасе нашли некоторые признаки сверхпроводимости. Это не было нулевым сопротивлением, но это ближайший к этому результат, полученный когда-либо. «Я считаю, что все экспериментальные результаты приближаются к сверхпроводимости», – сказал Жао. «Но я не могу исключить и другие объяснения». На данный момент нет сверхпроводников, которые работают при температуре выше 130 градусов по Кельвину (-143 С°). Но если материал может проводить ток без сопротивления при комнатной температуре, энергия не будет теряться в виде тепла, увеличивая быстродействие электроники низкой мощности. Передача электроэнергии сможет осуществляться на большие расстояния со 100% КПД.

       Используя пучки нанотрубок, Жао и Вонг изучали влияние магнитных полей на полые волокна углерода, известные как «многослойные углеродные нанотрубки». Каждая нанотрубка имеет типичные размеры одну миллионную часть метра в длину, несколько миллиардных долей метра в диаметре и стенки в несколько атомов толщиной. Нанотрубки крепко переплетены в продолговатые пучки длиной около миллиметра. Исследователи не зарегистрировали нулевого сопротивления в этих пучках. Они считают, что это произошло потому, что соединения между тонкими трубками никогда не получаются сверхпроводимыми. Но они действительно видели признаки сверхпроводимости в самих трубках.

       Например, когда исследователи помещают магнитное поле поперек жгута при температурах 400 градусов по Кельвину (127 С°), пучок генерирует свой собственный электрический ток, перпендикулярный магнитному полю. Такая реакция может быть признаком сверхпроводимости. И когда команда исследователей охлаждала пучки от более высоких температур, одновременно отключая внешнее магнитное поле, они оставались намагниченными. Ток, бегущий внутри трубок, может генерировать такое затяжное (по времени) магнитное поле, если нет никакого сопротивления, могущего заставить его исчезнуть.

       Поскольку каждый эффект может иметь более прозаическое объяснение, исследователи изменяли температуру, возможно влияющую на поведение нанотрубок. Статистически показана возможность именно сверхпроводимости, о чем Жао и Вонг утверждают в докладе, который будет опубликован в «Philosophical Magazine B. Dominating effect».

       Тем не менее, их аргументы не убеждают Пола Гранта, физика из Electric Power Research Institute, Пало Альто, Калифорния: «Вообще, сверхпроводимость имеет такое доминирующее влияние (на психику экспериментаторов?), что когда это происходит, она просто кричит на вас», – говорит Грант. «Она не проявляется в косвенных признаках.»

       «Теория сверхпроводимости не запрещает этого явления при высоких температурах», – сказал Саша Александров, теоретический физик из Loughborough University, Великобритания. «Материал становится сверхпроводящим при возникновении электронных пар. Обычно такие отрицательно заряженные частицы будут отталкиваться друг от друга, но в положительно заряженной кристаллической структуре возникают колебания, называемые фононами, которые помогают им собраться вместе. В углеродных нанотрубках частота этих колебаний очень большая, которая, как гласит теория, расценивается как сверхпроводимость при высоких температурах. Результат магнитного отклика очень интригует и способствует объяснению зарегистрированного явления», – сказал Александров.

       «Это вполне возможно», – соглашается Дэвид Кэплин, председатель Центра за Высокотемпературную Сверхпроводимость при Imperial College, Лондон. «Чтобы решить, являются ли нанотрубки сверхпроводниками или нет, необходимо измерить сопротивление внутри одной трубки», – сказал Александров. «Чтобы убедиться, я бы хотел видеть нулевое сопротивление».

 

       По всем этим неотразимым соображениям я не забыл искать даже после окончания пассажа о сверхпроводимости. «Где-то оно должно быть»,- думал я, и наконец мои поиски увенчались успехом. Среди журнального хлама, сваленного на чердаке, оказался «Monthly Nature» за август 1996 г. До этого года, замечу, ни о каких специфических проблемах ВТ-сверхпроводников не сообщалось. Но в статье с игривым названием «Has the fat lady sung» прямо названа причина, почему «не была революционизирована современная электронная технология, а вместе с ней и общество».

       Названная причина: патологическое поведение магнитных вихрей, вызванных частичным проникновением даже умеренных (без цифр) полей извне, повышающее сопротивление сверхпроводника до величин даже больших, чем у обычного проводника.

       «Как это происходит, ясно показано в эксперименте, описанном Шиллингом и сотрудниками. Они показали, что вихревая решетка способна переходить в новое состояние (вещества), названное текучим вихрем. Присутствие этой жидкости означает, что даже умеренные магнитные поля могут вызвать электрическую сопротивляемость этих материалов большую, чем даже у обычной меди. Вот и нет никакой революции, по крайней мере, такой, которая не потребовала немного больше времени.»

       И далее!

       «Сверхпроводники второго типа, к которым принадлежат и высокотемпературные, становятся частично проницаемы для магнитных полей, если температура превышает определенную величину. Магнитные линии выстраиваются в виде треугольной решетки, привязываясь к дефектам проводника, в которых образуется некоторое, но неизмеримо малое, сопротивление…»

       В общем, такая проницаемость никому не мешает. Но в ВТСП, при подходе к температуре жидкого азота эти линии «плавятся» и сопротивление возрастает: насколько – неизвестно. Между прочим, что тогда означает фраза из «Химии и жизни» №2, 1988 «С предельным магнитным полем у новых сверхпроводников все обстоит благополучно»? Да и вообще, «как будто это не в тот же день обнаружилось» – жаловался Шарапов Горбатому. Если бы оно обнаружилось…

       В статье этого самого Шиллинга и Ко из того же номера, о калориметрическом методе определения точек перехода можно найти и кое-что конкретное. Одна из точек: критическое поле 4,85 Тесла при температуре 83,1 градусов Кельвина (что, конечно, выше 77 градусов жидкого азота). Это все для того самого первого и простого иттрий-бариевого сверхпроводника. Суммарный график для этих «плавлений» магнитных линий представляет собой падающую линию, начинающуюся у 8Т при 78К и доходящую до 92К при нуле магнитного поля, когда эта линия сходится с линией второго перехода, то есть сверхпроводимость исчезает совсем. Кажется, это несколько противоречит выводам первой статьи? Величины же удельной энтропии, так, как они представлены (на слой, на вихрь) мне, к сожалению, ничего не дают.

 

       Хочу сразу сказать, что во всю эту научную часть верю до последней цифры. Врать в цифрах они не смеют. Но им и не надо. Всякое грамотное вранье (это еще Раскольников объяснял) заключается в маленькой детали, часто даже в одном слове, которое придает всему «другой вид». Время от времени приходится, например, слышать, как местный начальник, асфальтируя лужи и занимаясь прочей показухой перед приездом, скажем, президента, отговаривается тем, что «перед приходом гостей вы же наводите порядок в доме» , забывая только ту мелочь, что он ждет не гостя, а хозяина. И ерунда вроде, но не сразу сообразишь, что тут не так. А если что потоньше?

       В нашем случае ложь – то, что это такая неразрешимая проблема, которая делает невозможным ну никакое использование нового открытия. Даже такое, как в демонстрации школьных опытов. Настолько, что спустя 16 лет в списке научных событий того года оно не заслужило себе места рядом с перелетом кого-то куда-то на воздушном шаре. Ложь, кстати, все равно шитая вполне белыми нитками – показывать нельзя. Иначе не было бы и цели закрыть Открытие.

 

       Если бы это магнитное поле, которое путает всю картину, было в самом деле таким незначительным, то как вообще возможно было обнаружить явление высокотемпературной сверхпроводимости – да еще случайно обнаружить? Не только 8Т, но и 5 – это совсем не мало! В любом учебнике электротехники можно прочитать подобное: «Наибольшие магнитные индукции для железа и его сплавов, получаемые при практически целесообразных напряженностях магнитного поля, составляют 1,5 – 1,9 Тл.» Каково все-таки это омическое сопротивление? Может быть, даже при тяжелых условиях эксплуатации, оно так незначительно, что тепло проводника вполне может отводиться? Какую-то долю энергии в любом случае придется тратить на охлаждение.

  

       Захожу недавно на сайт «Натуры», скопирую, думаю, хотя бы название статьи этого Шиллинга (очень уж длинное было – поленился выписывать). Смотрю – нема статьи! Исчезла! Бишопа статья есть, Гранта (о ней чуть ниже) – тоже есть, а Шиллинга – нет. Интересно было бы посмотреть, осталась ли ссылка у Бишопа на Шиллинга, но в сам текст статьи бесплатно не пускают. Ладно, думаю, мало ли что – ну наивный я такой, доверчивый. Ищу Шиллинга в списке авторов «Натуры», с помощью их поисковика. Нет такого автора! Есть – но явно не тот, потому что биолог. Ну вы даете, в Натуре!

 

       Цитируем дальше.

       В журнале «Monthly nature» за июнь 1996г. есть еще статья «Counting the ten-year returns» на эту тему. Кстати! Целых три статьи за одно лето, хотя ни одной два года до и два года после. Причем без всяких каких-нибудь особенных или новых фактов. Это уже сам по себе факт, что все тут идет далеко не естественным порядком. Причем я не могу даже сказать, что причиной такой вспышки была только необходимость «запустить дурочку». Время от времени попускает немного, меняется политика, кого-то кем-то назначают или снимают, вероятно, или вследствие тех или иных влияний появляется другое мнение…

       Само содержание третей статьи говорит о том, что все не так примитивно, не однослойно. Иногда ученым дают леденец, чайку с сахарком, но есть и фронда, и контрабанда. Иногда дают ученым побаловаться и практически.

       Вот дали автору статьи, Полю Гранту, сделать 50 метров сверхпроводящего кабеля с охлаждением жидким азотом – и все работает, и никакое магнитное поле не мешает. Особенно автор радуется, что кабель сделан на обычном заводском оборудовании, а не руками дорогостоящих рабочих с докторскими степенями, и проводит он ток в два раза больше, чем медный кабель того же диаметра – хотя каково сечение самого сверхпроводника все-таки неясно. Говорится только (есть фото), что он навит из «стабилизированной» (не знаю, как это выглядит) свинцом ленты на дюймовый шланг. Подчеркиваю: навит, да еще в три слоя. Стало быть, поля создаваемые этой навивкой, не мешают, несмотря на плотность тока.

 

       Aldo Bolza, Pirelli Cavi, Милан. Цитата: «В моей собственной специализации силовых электролиний мы объявили об успешном создании и испытаниях 50-метрового подземного передающего кабеля. Собранный проводник содержит более 6 км свинцовой ленты, стабилизированной BSCCO. Погруженная в жидкий азот, гибкая конструкция передает 1800А постоянного тока, что более чем вдвое превышает рекорд производительности ВТСП-проводника. На мой взгляд, более важно, что лента была намотана на однодюймовую полую оплётку с помощью стандартного инструмента, и даже не командой рабочих-специалистов.»

       Делим 1800 пополам, потом на электропроводность меди в изоляции без принудительного охлаждения и получаем как раз, что там где в ВТС-кабеле hollow core, там в обычном кабеле сплошная медь. Хорошенькое сравнение сделал автор статьи! Скромность тоже должна иметь пределы. Лучше сказать, что с тем, для чего в одном случае нужен обычный кабель, в ВТС-кабеле справляется одна изоляция.

 

       А еще другой докладчик той же лентой намотал электродвигатель. Я-то думал, только мне в голову приходят такие дурацкие идеи, но некоторые их еще и осуществляют!

       «Сообщение с похожим приятным сюрпризом пришло в следующей статье. Предприятие Dave Driscoll, Reliance Electric сконструировало и эксплуатирует 95-киловаттный (125 лошадиных сил) синхронный электродвигатель, ротор которого был намотан лентой BSCOO того же сорта, что использовался в кабеле-проводнике. Но поскольку магнитные поля, возникающие в процессе работы мотора, являются намного большими, чем в кабеле, рабочая температура должна быть 27К в отличие от 77К, необходимой для достижения необходимого уровня тока. Хорошая новость в том, что прототип действительно производит мощность 200 лошадиных сил, будучи ограниченным специально разработанным тормозом, когда внутренняя мощность двигателя возможно достигает 400 лошадиных сил.»

       Обратите внимание на последнюю фразу: у них не было даже стенда, на котором можно было бы как следует испытать электродвигатель. На таком уровне, в соотнесённости с уровнем конференции, где это докладывается, в таких условиях проходят работы по практическому использованию ВТСП – не Тошиба-с!

       Трудно сказать, какой уровень силы тока им был нужен и для чего было брать обычный двигатель – притом, что у ротора, на который был намотан BSCCO, есть, как известно, свое расчетное насыщение. Это в самом деле глупо – работа на уровне школьного кружка.

  

       Трансформатор, конечно, наматывать совсем не обязательно, даже если бы сверхпроводящие материалы были по-прежнему хрупкими. Пусть по каким-то причинам не хотят строить ВТСП-линии электропередачи (магическая фраза: «Не готовы»). Но заменить эти огромные, смердящие горячим маслом поля трансформаторных подстанций одним холодным трансформатором средних размеров можно было бы через месяц. Environmentally friendly, как пишут о них – я ведь не с потолка это беру, все это можно найти. А по поводу невозможности использовать ВТСП в двигателях вот, что мы читаем (обратите внимание на годы!) в сборнике аннотаций с Научной конференции института сверхпроводимости и твердого тела (Российский научный центр «Курчатовский институт», 2005 год):

       «В период 1995-1999 гг. созданы первые в мире серии гистерезисных ВТСП двигателей мощностью 100Вт, 500Вт, 1кВт и 4кВт, работающих в среде жидкого азота. Показано, что эти двигатели превосходят в 4-5 раз по массогабаритным параметрам электрические машины традиционного исполнения.

       В 1997-1998гг. МАИ разработаны, изготовлены и испытаны новые типы реактивных синхронных ВТСП двигателей мощностью 0,5кВт, 2кВт, 5кВт и 10кВт с композитным ВТСП ферромагнитным ротором, работающих при температурах жидкого азота.

       На базе разработок МАИ в 1999 г. на фирме OSWALD Elektromotoren GmbH (г.Милтенберг) совместно с МАИ созданы и испытаны реактивные ВТСП двигатели с азотным охлаждением мощностью 20 и 38кВт.»

 

       Вы что-нибудь об этом слышали?

       Или вас это уже успокоило?

 

       Но почему в совсем свежем номере «Newsweek» за 25 сентября 2006 г. мы читаем статью, а заодно и рекламу Sanyo, где указывается КПД новых фотоэлементов 21,6%, а об этом нигде ни слова.

       Возникает еще один попутный вопрос: чем их намотали, эти двигатели в 1995-1999 годах. Той лентой, которую сейчас предлагает American Superconductor с плотностью тока 14000 ампер на сантиметр – хотя самые первые образцы показывали в несколько раз лучшие характеристики? Напомню: «задача перед “учеными” ясна и находится в общем курсе противодействия главной опасности, а именно: сделать то, что уже было простым и дешевым, сложным и дорогим».

  

       Идея-то заключается в том, чтобы в двигателях и трансформаторах вообще обойтись без железа, а это возможно при таких же габаритах без потери мощности, если сила тока в ВТСП обмотках будет в 1000 раз превышать силу тока в медных. Медь может пропускать до 400А на квадратный сантиметр. Значит, расчетная точка для силы тока (при той же, повторяю, что и в обычных двигателях, напряженности магнитного поля) 400000А на см2. Хотя, конечно же, при использовании совсем других материалов будут разработаны и другие конструкции двигателей (и сопряженных с ними механизмов), не требующие таких напряженностей и токов. В двигателе и в трансформаторе вместо железа окажется тоже hollow core, то есть какая-нибудь пустотелая, может быть пластмассовая, конструкция, вращающаяся часть которой будет плавать в том же магнитном подвесе вместо шариковых подшипников. Не думаю, что полости нельзя будет использовать как аккумулятор, который может быть просто продолжением (утолщением) обмотки, но даже если и не будет экономии в удельном, на единицу мощности, объеме, то какова будет экономия массы (про материал и массу трансмиссии я уже не говорю) и, стало быть, той же потребной мощности и энергии! Вот такая разработка была бы интересна: двигатель без трансформаторного железа с азотным охлаждением. Пусть он даже уступал бы обычному по каким-то характеристикам, но зато это были бы какие-то характеристики. Вместо этого они сделали игрушку, которой не смогли даже наиграться как следует (то есть испытать).

 

       А вот эти ребята наигрались. Посмотрите на этих красавцев из МАИ:

       Подпись под рисунком: «Левитирующая платформа представляет собой раму, на которой закреплены четыре криостата с ВТСП керамикой и установлен корпус демонстрационного экипажа».

       Но кабель-то не игрушка, он работает. А сверни его в бухту (мы видели, что это допустимо – как он навит), да соедини концы кабеля между собой – вот уже и аккумулятор. И тоже с какими-то характеристиками. Какими? И сразу будет видно, как их улучшать; да и без «стабилизатора» можно обойтись – гибкость-то уже не нужна, как для кабеля. Напротив, нужна жесткость. Но эти вопросы чисто конструктивные.

 

       О развитии ВТСП технологии можно прочитать кое-что в той же статье Гранта:

       «Быстрое и драматическое развитие производительности BSCCO-лент, которое произошло на протяжении пяти или шести лет, дает возможность создания других прототипов устройств (Alex Malozemoff, American Superconcuctor). American Superconcuctor может производить 10 километров BSCCO-ленты в месяц, длиной по 1000 метров каждая. Критическая плотность тока в этих лентах может превышать 44000А/см2. Malozemoff (типичная американская фамилия) заметил, что с 1990 года BSCCO-провода демонстрируют последовательный рост производительности.

       Где он остановится? Небольшие участки BSCCO на ленте, особенно около серебряных элементов интерфейса, были обследованы с помощью магнито-оптических методов и продемонстрировали плотность тока 100000А/см2 при температуре 77К (David Larbalestier, Univ. Wisconsin). За этим пределом, где применимы решения со сверхплотным магнитным полем при температуре жидкого азота, будут необходимы новые технологии.»

       Напомню, что журнал 1996 года.

 

       Далее говорится о разных металлургических способах получения нужных параметров зерен этого сплава, которые в Лос-Аламосской лаборатории дали даже результат в миллион ампер на кв.сантиметр. «Группа Oak Ridge описала принципиальную возможность получения текстурных свойств из их метода, который во время конференции в Хьюстоне вырабатывал ток только приблизительно 100000А/см2. Но пока писался этот обзор, я слышал, что часть этих образцов уже имеет Jc=500000A/см2. Это важное улучшение, учитывая то, что металлургическое текстурирование значительно легче в производстве, чем бомбардировка ионными пучками.»

       К этому можно добавить, что в Physics Today за август 2002 год проволока BSCCO наряду с другими сверхпроводниками спокойно помещается в графике с указанием Je=600000 A\cm2. Je – это разновидность Jc, Engineering current density. При этом катушки из HT-сверхпроводникa (речь идет именно о получении с их помощью сверхмощных магнитных полей, больше 20 Т) рассматриваются в тех же условиях, что и низкотемпературные, то есть при 4,2 К. А про ВТСП материалы, хотя им уделена отдельная часть статьи, говорится только, что их Tc “well above”, то есть гораздо выше, чем 4,2 К.

       Такое впечатление, что им страшно сказать, насколько well.

       В этой статье уточняется: BSCCO-2212. Это означает Bi2Sr2CaCu2Ox, а в некоторых сплавах висмут может быть заменен таллием – это только то, что я знаю. Одну цифру для BSCCO я нашел еще в публикации начала 90-х: температура перехода 120-130 К. Так что, по-моему, есть возможность подумать и о новом хладагенте. Жидкий азот дешев и экологически чист, но сэкономить на охлаждении тоже неплохо. 50 градусов – это не кот начихал, хотя, конечно, это не те 50 градусов, которые разделили холодную и теплую сверхпроводимость. Но в статье 2002 года есть одна интересная фраза: «Круглая проволока BSCCO-2212 была изготовлена еще в 1989 году, но до позапрошлого года плотность тока для нее была гораздо ниже, чем в ленте.» Стало быть, многослойные провода теперь тоже не нужны.

 

       Так что это значит, господа? Повторяю: что это? Непреодолимые технические трудности или нежелание, «отсутствие интереса», причем сразу у всех?

 

       Знаете, я думаю, они в самом деле могут не понимать. В это трудно поверить, особенно такому цинику, как я, но это может быть. Во-первых, ситуация уникальная, небывалая еще в истории и психологически не только никак не подготовленная предшествующим развитием технической цивилизации, но и прямо ему противоречащая. Совершенно по той же причине Открытие прошляпили те, кто теперь его закрывает. Было игнорирование, как средство конкурентной борьбы, бывали монополии на что-то, но никогда не было мировой монополии на отсутствие чего-то. Вещи, которые не с чем сравнить, трудно не только понять, но даже увидеть. К тому же доступ к этому делу в первую очередь у физиков, а физик – это специалист, и в таковом качестве мало склонен влезать в чужую специальность, а широкое, общее мышление – это, как уже было сказано, самая узкая специальность.

 

       Неудивительно, что в сознании людей, профессионально знакомых с этой проблемой физики бродят какие-то смутные, плохо идентифицируемые, поверхностные психологические объяснения происходящего. Такие же, что были и у меня, пока я не посмотрел на это дело пристально. Потому что необходимость какого-то объяснения очевидна. А предложенное объяснение («сплавление вихрей») никак не может убедить людей, достаточно компетентных, чтобы писать статьи, в которых мы и можем видеть растерянные попытки удовлетвориться словами, которые они плохо понимают и подобрать какие-то объяснения из известных им. Но что им известно? Разве образ ученого-естественника не был всегда аналогом рассеянного, вне своей области не приспособленного к жизни чудака, считающего, что человеческие отношения должны строиться разумно и логично по принципам науки? Ученые по-своему привыкли к тому, что тайное может стать явным, но как явное может стать тайным – такое им не по мозгам. Это надо понять, а сделать – можно просто со страху.

       Я сам хорошо знаком с этим состоянием и с такими положениями. Разница только в том, что у меня очень широкая узкая специализация, при которой требовать от людей объяснений их поступков можно не более серьезно, чем разговаривать с предметным стеклом. Понять общий смысл трудно при любой специальности, требуемой для «участия в сложных технологических и экономических процессах». Эти знания, этот ум и порядок в мозгах, талант разумности жизни – и есть самое редкое? Но ведь я знаю, что это так.

 

       Еще цитата из статьи Гранта.

       «Общий тон был задан обращением к съезду Джона Роуэлла, который не был прежде известен особо жизнерадостными взглядами на коммерческие перспективы сверхпроводимости, высоко- или низкотемпературной. В этот раз, однако, он был весьма воодушевлен, особенно в отношении высокотемпературной электроники, указывая, что целый ряд целей по соотношению цены и характеристик, поставленных радиопромом, был достигнут. Особенно это касается фильтров для наземных станций сотовых или персональных средств связи. Остающиеся вызовы, по его мнению, связаны не с самой технологией, а с принятием ее, в частности, с необходимостью использовать криогенную технологию, которая рассматривается многими потенциальными пользователями, как неизбежно дорогая и ненадежная. Необходимы образование и комплексный подход для того, чтобы она стала восприниматься так же спокойно, как бытовые холодильники. Роуэлл заключает, что следующие десять лет будут десятилетием рынка для сверхпроводящих приборов, с перспективой миллиардных капиталовложений

       Как все-таки медленно доходит до людей! В искренность и наивность здесь так же трудно не поверить, как и в то, что к исходу next ten years они так и не начали ничего соображать. Неужели и Грант по-прежнему удивляется, что никто не берет его хорошего и дешевого кабеля, заменяющего целую кучу меди? Друг мой, а медь куда? На котелки пустить? Он-то думал, что если он изготовил его на заводском оборудовании, то заводы так и набегут на десять долларов за метр тысячеамперного кабеля…

 

       Но и тогда уже отчетливо назревало чувство, хорошо выражаемое словами «не знаю, что и думать». Если государства создают космические и атомные программы, финансируют огромные энергетические и иные строительные проекты, в том числе довольно причудливые, то почему же именно здесь, где все так просто и очевидно выгодно, проявляется вдруг косность мышления? Неужели они так холода боятся?

       «Между тем, улучшенные характеристики первого поколения проволоки BSCCO представляются вполне удовлетворительными для большого количества предполагаемых в следующие пять лет применений, особенно в силовых кабелях. Главная неопределенность касается цены и принятия рынком. Общепризнанная планка соотношения цены и качества для коммерческого использования составляет десять долларов за метр кабеля с пропускной способностью в тысячу ампер, но последний фактор, именно заинтересованность рынка, является гораздо большей трудностью. Если следующему десятилетию суждено увидеть распространение ВТС-проволоки в силовом оборудовании, столько же, если не больше усилий, как к развитию самой технологии, придется приложить в этой области».

       Какой же спрос, если нет рекламы, нет предложения, нет информации… Стоп!

 

       Ба!.. Я все про эти фильтры. «Сотовый взрыв» 90-х, это не оно ли?! Ах, черт! Понятно теперь, почему «упиравший в своем докладе именно на электронику», но недооценивший той детали, что тут в общем-то некого было расталкивать, Джон Роуэлл сменил вдруг скептицизм на энтузиазм. Он-то подумал, что брешь пробита, что дело пошло, то на этом все не кончится. Ай-ай!